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Abstract

A positive relation between the conditional mean and conditional volatility of aggregate stock

returns, while viewed as a fundamental law of finance, has been challenging to find empirically.

We consider a representative agent asset pricing model with Knightian uncertainty and demon-

strate that this risk-return tradeoff depends on the agent’s ambiguity attitude (reflecting the

agent’s degree of optimism or pessimism). The model predicts the conditional equity premium

is increasing in market volatility, but its slope flattens as market optimism rises. We develop

a methodology to extract the representative agent’s ambiguity attitude from our asset pric-

ing model. Results validate our model predictions and document the significant in-sample and

out-of-sample explanatory power of ambiguity attitude in explaining the risk-return tradeoff.

In our sample, market volatility is not significant in forecasting returns. However, including

the market ambiguity attitude leads to a significant positive relationship between volatility and

future returns. Hence, our model and results identify market ambiguity attitude as a missing

state variable that can explain why the literature has found it difficult to empirically validate

the risk-return tradeoff.
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1 Introduction

A positive relationship between the conditional mean and the conditional variance of aggregate

stock returns (the risk-return tradeoff) is a central empirical implication of equilibrium asset pricing

theory. Rational risk-averse investors require higher compensation in equilibrium for holding stocks

during riskier periods, characterized by higher market volatility (Merton, 1973, 1980). Our paper

adds to this explanation by showing that the market equity premium reflects greater compensa-

tion for holding stocks during more volatile periods and periods with high ambiguity aversion or

pessimism. In contrast, this premium is weakened in optimistic periods, where more investors are

motivated by lottery-like payoffs and positive skewness. We use ambiguity attitudes to formalize

market optimism and pessimism and show theoretically and empirically that the interaction of

market volatility and optimistic ambiguity attitudes restores a positive, stable risk-return tradeoff,

and boosts return predictability. In contrast, the traditional risk-return tradeoff with only market

volatility is insignificant and the coefficient is unstable across time.

There is a large and growing literature on the risk-return tradeoff. Ghysels et al. (2005) comment

that “This risk-return trade-off is so fundamental in financial economics that it could be described

as the ‘first fundamental law of finance.’ Unfortunately, the trade-off has been hard to find in the

data. Previous estimates of the relation between risk and return often have been insignificant and

sometimes even negative.” Recent work continues to find the absence of a risk-return relation for

the aggregate stock market (Moreira and Muir, 2017; DeMiguel et al., 2021; Barroso and Maio,

2023) and theoretical asset pricing models have struggled to offer an explanation.

In this paper, we build on the literature related to Knightian uncertainty and ambiguity in

which probabilities of events are unknown and investors have varying degrees of optimism and

pessimism (ambiguity attitudes) towards this uncertainty. Prior research has found that ambiguity

and ambiguity aversion help explain the equity premium puzzle (e.g., Chen and Epstein, 2002; Ju

and Miao, 2012), the stock market non-participation puzzle (e.g., Dow and da Costa Werlang, 1992;

Easley and O’Hara, 2009; Dimmock et al., 2016), and the cross-section of expected stock returns

(e.g., Thimme and Völkert, 2015; Bali and Zhou, 2016). We provide a theoretical asset pricing

model that shows market ambiguity attitude (the ambiguity attitude of the representative agent

of the aggregate stock market) plays a critical role in explaining the risk-return tradeoff. To test

1



if market ambiguity attitude affects the risk-return tradeoff, we first develop a methodology for

measuring market ambiguity attitude directly from an asset pricing model.1 The traditional risk-

return tradeoff might suffer from an omitted variable bias, since volatility only captures one type of

risk (Ghysels et al., 2005). The equity premium can be decomposed into the standard risk premium

of the consumption CAPM, a speculative premium and an ambiguity premium. These additional

premiums incorporate broader forms of risk as they depend on ambiguity, market optimism and

pessimism, disaster risk, and positive skewness, linking four strands of the asset pricing literature.

We show that market ambiguity attitude is related to the skewness of the risk-neutral distribution

which is advocated by the CBOE as a measure of market tail risk. A survey of finance professionals

finds that skewness is more important than volatility as a measure of risk (Holzmeister et al., 2020).

We consider a representative agent from the NEO-EU (non-extreme outcome expected utility)

model of choice under ambiguity as in Chateauneuf et al. (2007) and Zimper (2012), which permits

a full spectrum of ambiguity attitudes ranging from purely pessimistic to purely optimistic.2 In

contrast, the standard ambiguity models applied to market settings have difficulty reconciling both

ambiguity-averse behavior and optimistic attitudes toward ambiguity (Gilboa and Schmeidler, 1989;

Hansen and Sargent, 2001; Klibanoff et al., 2005; Kocher et al., 2018).

Chateauneuf et al. (2007) observe, “On an aggregate level, business cycles and stock market

fluctuations have been attributed to ‘irrational’ optimism and pessimism. Economic theory, how-

ever, finds it difficult to see in such moods a major factor determining economic behavior.” By

demonstrating that market ambiguity attitude explains time variation in the risk-return tradeoff

and that it predicts market crashes and recessions, our study identifies market ambiguity attitude

as a missing state variable in traditional asset pricing theory that provides a new source for business

cycles and stock market fluctuations.

1By “risk-return tradeoff” we refer to a very specific empirical relationship: the relationship between the con-
ditional market excess return and the conditional market volatility. The presence of this tradeoff for the aggregate
stock market (whether market volatility positively predicts excess returns) has been investigated and debated in many
empirical studies. However, the empirical evidence has been mixed. French et al. (1987), Baillie and DeGennaro
(1990), Campbell and Hentschel (1992), Ghysels et al. (2005), Lundblad (2007), Guo and Whitelaw (2006), Brandt
and Wang (2007), and Pástor et al. (2008) find a positive risk-return tradeoff. In contrast, Campbell (1987), Nelson
(1991), Whitelaw (1994), Brandt and Kang (2004), and Lettau and Ludvigson (2010) find a negative risk-return re-
lation. As noted by Yu and Yuan (2011), “numerous studies over the past three decades find rather mixed empirical
evidence of such a relation” (p.367).

2The NEO-EU model satisfies the axioms of both the α-maxmin multiple priors model (Gilboa and Schmeidler,
1989; Ghirardato et al., 2004), and Choquet expected utility theory (Schmeidler, 1989), two of the primary frameworks
for modeling decisions under ambiguity in which objective probabilities of events are unknown.
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In this paper, we focus on the new aspect of our approach which is the time series of market

ambiguity attitude. The main contribution is to the literature on applications of ambiguity models

to asset pricing and return predictability. First, we introduce a methodology for extracting market

ambiguity attitude (i.e., optimism and pessimism of the representative agent) and aggregate market

ambiguity. Second, we demonstrate theoretically and empirically that market ambiguity attitude

generates time variation in the risk-return tradeoff. Third, results document that market ambiguity

attitude predicts stock market crashes and recessions, identifying two sources of its predictive power

for market returns.

A preview of our results shows that across our sample period, 1990 – 2022, market volatility

fails to significantly positively predict the equity premium. However, when including the interaction

between market ambiguity attitude and volatility, the coefficient on market volatility is positive

and significant while the interaction term is negative and significant, as predicted by the theory in

Section 2. The complementary predictability between volatility and market ambiguity attitude is

strong, raising the in-sample R2 by a factor of three or more for in-sample tests when the interaction

term is included. The out-of-sample R-squared (R2
OS) at the one-month forecast horizon increases

from -0.16% to 4.06% when the interaction term is added to the regression.

As an additional out-of-sample analysis of the value of of the information contained in the

market ambiguity attitude, we construct a real-time dynamic investment strategy based on our

index. The strategy based volatility and market ambiguity attitude nearly doubles the Sharpe

ratio of the historical average benchmark, increasing from 0.40 for the historical average to 0.78,

while the certainty equivalent return rises from 4.07% to 13.17%. The investment strategy also

generates a significant annualized Fama-French six-factor alpha of 7.06%. Goyal-Welch graphs

further illustrate that the predictive performance of the forecast with market ambiguity attitude

and market volatility consistently outperforms that of the historical average benchmark over the

out-of-sample period while market volatility alone under-performs the historical average. As a

secondary finding, market ambiguity attitude also forecasts NBER recessions even after controlling

for sentiment and other recession predictors. We also show that ambiguity attitude restores the

risk-return tradeoff over long horizons, whereas out-of-sample forecasts based on market volatility

yield a negative R2
OS at all horizons.
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2 The NEO-EU CAPM

2.1 The Representative Agent

The α-maxmin multiple priors framework from Ghirardato et al. (2004), of which the NEO-EU

model of Chateauneuf et al. (2007) is a notable special case, is a prominent axiomatic framework

from decision theory in which aversion and affinity to ambiguity coexist. The α−maxmin multiple

priors framework and the NEO-EU model have been studied in laboratory experiments at the

level of individual behavior (Baillon and Bleichrodt, 2015; Baillon et al., 2018; Dimmock et al.,

2015; Kocher et al., 2018; König-Kersting et al., 2023) and in market experiments (Bossaerts et al.,

2010). The α-maxmin model has also been applied to asset pricing theory (Chateauneuf et al.,

2007; Zimper, 2012; Anthropelos and Schneider, 2022). However, it has not yet been applied to the

risk-return tradeoff, and it has not been investigated empirically using stock market data.

Let S represent a compact set of possible future states of nature, C a set of consumption levels,

and F a set of acts where an act, f : S → C assigns a consumption level to each state. One state

s ∈ S will be realized but that true state is presently unknown. Subsets of S are referred to as

events. Let Ω denote the set of all possible events. Let ∆(S) denote the set of all probability

distributions on S.

It is typical to write the α-maxmin value function with α as the weight on the worst-case

expected utility. However, the original NEO-EU model formulation includes α as the weight on the

best-case expected utility and in the present context that formulation is more intuitive to describe

how α flattens the slope of the risk-return relation.

DEFINITION 1. An α-maxmin agent has the following value function for an act f:

V (f) := α max
P∈M

EP u
(
C(s)

)
+ (1− α) min

P∈M
EP u

(
C(s)

)
, (1)

where M ⊆ ∆(S) is a closed convex set of prior distributions that the agent deems plausible given

the agent’s information. In (1), α represents the agent’s attitude (degree of optimism) toward

ambiguity, and EP u
(
C(s)

)
is the agent’s expected utility with respect to prior distribution P ∈ M .

In empirical applications, it is often useful to assume a parameterized set of prior distributions.
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A common specification of M is the following (Chateauneuf et al., 2007; Dimmock et al., 2015):

Mγ = {P ∈ ∆(S) : P(E) ≥ (1− γ)π(E)}, (2)

for all E ∈ Ω, where γ ∈ [0, 1]. In (2), the agent has a reference prior distribution, π, and a degree

of confidence in that reference prior of 1− γ. As summarized in Dimmock et al. (2015), the set of

priors Mγ implies the following restrictions on the probability distributions P ∈ Mγ :

0 ≤ (1− γ)π(E) ≤ P(E) ≤ (1− γ)π(E) + γ ≤ 1,

for all E ∈ Ω. Dimmock et al. (2015) note that the set of priors Mγ “allows the probability

P(E) to vary in an interval of length γ around the reference probability π(E).” In this model, γ is

interpreted as the level of perceived ambiguity and the model reduces to the standard subjective

expected utility model when the agent perceives no ambiguity (corresponding to γ = 0).

Chateauneuf et al. (2007) show that the α-maxmin model in (1) combined with the set of

priors in (2) is equivalent to the NEO-EU representation of preferences in Equation (3) for which

they provide an axiomatic foundation. A NEO-EU (non-extreme outcome expected utility) agent

maximizes a weighted average of the expected utility of an uncertain prospect and the Hurwicz

value of the prospect which takes a convex combination of the best and worst-case utilities.3

DEFINITION 2. A NEO-EU agent has the following value function for an act f :

V (f) = (1− γ)Eπu
(
C(s)

)
+ γ
(
αu(C) + (1− α)u(C)

)
. (3)

In (1), V (f) is the valuation of act f for the NEO-EU agent, Eπu
(
C(s)

)
is the agent’s expected

utility (EU) from consumption under act f with respect to her subjective probability distribution,

π, while u(C) and u(C) are, respectively, the utility from the best-case and worst-case consumption

levels across states under f . These preferences separate the agent’s beliefs, ambiguity attitude, α,

and perceived level of Knightian uncertainty, γ. The agent’s ambiguity attitude can range from pure

ambiguity aversion or pure pessimism (α = 0) to pure ambiguity seeking or pure optimism (α = 1).

The agent’s perceived level of ambiguity, γ, ranges from no ambiguity (γ = 0), in which case the

3We restrict our attention to acts that are simple functions as in Lemma 3.1 of Chateauneuf et al. (2007).
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agent maximizes expected utility with respect to her subjective prior distribution, π, to complete

uncertainty (γ = 1), where the agent places no confidence in her prior and relies on the Hurwicz

criterion for robust decision making which is robust to all prior distributions over the same support.

The NEO-EU model nests expected utility preferences (γ = 0), and the ϵ-contamination model of

ambiguity aversion (γ ∈(0,1], α = 0), two prominent theoretical benchmarks in the literature (Dow

and da Costa Werlang, 1992).

The NEO-EU model accommodates aversion toward left-tail ambiguity and a preference for

speculating on right-tail ambiguity. By overweighting the extreme outcomes, Chateauneuf et al.

(2007) show that the NEO-EU model explains the behavior of a consumer who purchases both

lottery tickets and insurance, which has been a challenge for EU since its inception (Friedman

and Savage, 1948; Ebert and Karehnke, 2021). More generally, the NEO-EU model generates

a preference for ambiguity over low-likelihood events and an aversion to ambiguity over high-

likelihood events, consistent with the experiments in Baillon and Bleichrodt (2015) and Kocher

et al. (2018). Since the focus of our empirical strategy is to capture the low-frequency movements

in the risk-neutral probability of tail events, NEO-EU is a natural choice among ambiguity models

for our application. In contrast this overreaction to both positive and negative tail events is not

captured by popular ambiguity models that permit only uniform ambiguity attitudes, such as the

smooth model of ambiguity aversion (Klibanoff et al., 2005), the maxmin multiple priors model,

(Gilboa and Schmeidler, 1989), robust control preferences (Hansen and Sargent, 2001), and the

ϵ-contamination model (Dow and da Costa Werlang, 1992).4

2.2 Equilibrium

Motivated by Chateauneuf et al. (2007) and Zimper (2012), we consider an asset pricing model

with a NEO-EU representative agent. Our goal is not to develop a full-fledged dynamic general

equilibrium model, but rather to develop a transparent model that highlights that the risk-return

tradeoff is missing a role for market ambiguity attitude and that provides testable implications. As

in Chateauneuf et al. (2007), we present our analysis in a simple two-period model in which the

4The NEO-EU model also has an alternative interpretation of based on probability weighting. Wakker (2010)
notes that the probability weighting function embedded in (3), is among the most promising families of weighting
functions in the literature and “the interpretation of its parameters is clearer and more convincing than with other
families.”
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economy has one risky asset representing the aggregate stock market and a risk-free zero-coupon

bond in zero net supply. The risky asset’s price in period t is Pt, and its stochastic payoff in state

s in period t+ 1 is Xt+1(s). The risk-free bond’s price in period t is P b
t , and its payoff is one unit

of consumption with certainty. We assume the agent has a standard CRRA (constant relative risk

aversion) utility function. The agent’s utility in period t is u(Ct) :=
C1−λ

t −1
1−λ , where Ct is the current

level of consumption and λ is the relative risk aversion parameter. We denote the time discount

rate by δ ∈ (0, 1). To simplify notation, in our subsequent analyses, for any variable θ, we define

θt+1 := θt+1(s), and we denote the corresponding conditional expectation by Etθt+1 := Eπ,tθt+1(s).

At time t, the agent chooses its level of consumption and investment to maximize:

max
{Ct,Bt,St}

u
(
Ct

)
+ (1− γt)δEtu

(
Ct+1

)
+ γtδ

[
αt u

(
Ct+1

)
+ (1− αt)u

(
Ct+1

)]
, (4)

where Etu(Ct+1) is the time t expected utility of consumption in period t + 1, and u(Ct+1) and

u(Ct+1) are utilities from the perceived best (optimistic) and worst (pessimistic) case consumption

levels in period t + 1. Note that the conditional expected utility, Etu(Ct+1), and the conditional

maximum and minimum consumption levels, u(Ct+1) and u(Ct+1) are known to the agent at time

t. Moreover, γt and αt represent the agent’s perceived ambiguity and ambiguity attitude at time t.

The budget constraints at time t and t+1 are Ct+P b
t Bt+PtSt = Ωt, and Ct+1 = Bt+StXt+1+Ωt+1,

where St and Bt are the agent’s position in the risky and risk-free assets in time t, and Ωt is the

agent’s endowment at time t.

The utility cost of each unit of (forgone) consumption at time t is u′(Ct), and since one share of

stock is worth Pt units of consumption, the utility cost of buying one unit of stock is Pt u
′(Ct). The

payoff from one share of stock in t+ 1 is Xt+1, and thus, the expected utility gains from buying a

share of stock is (1−γt)δEtu
′(Ct+1)Xt+1+γtδ

(
αtu

′(Ct+1)Xt+1+(1−αt)u
′(Ct+1)Xt+1

)
. Thus, the

equilibrium price Pt adjusts to equate the current marginal utility cost to the discounted marginal

utility gains, that is:

Pt u
′(Ct) = (1− γt)δEtu

′(Ct+1)Xt+1 + γtδ
(
αtu

′(Ct+1)Xt+1 + (1− αt)u
′(Ct+1)Xt+1

)
.

We assume the representative agent ranks the state of the world where both consumption and
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market payoff are the highest (lowest) as the best (worst) state in t + 1. Dividing the above

equation by u′(Ct) and using the notation for the stochastic discount factor, Mt+1 := δ u′(Ct+1)
u′(Ct)

:

Pt = (1− γt)EtMt+1Xt+1 + γt
(
αtM t+1Xt+1 + (1− αt)M t+1Xt+1

)
. (5)

In (5), the price of a risky asset is a weighted average of the fundamental component, EtMt+1Xt+1,

which is the asset’s expected discounted payoff, that reflects the agent’s information, and an am-

biguity attitude component, αtM t+1Xt+1 + (1 − αt)M t+1Xt+1, that is a function of the agent’s

optimism and pessimism toward ambiguity. The relative strength of these two components depends

on the agent’s perceived level of ambiguity in the market, γt, with the agent relying less on its in-

formation at times of high ambiguity. The effects of market ambiguity attitude are amplified in

times of high ambiguity.

Given that the return in state s is the payoff in state s, divided by the price, we have Rt+1 =

Xt+1/Pt and hence, we express (5) as the following Euler equation:

(1− γt)EtMt+1Rt+1 + γt
(
αtM t+1Rt+1 + (1− αt)M t+1Rt+1

)
= 1. (6)

Similarly, for the return of the risk-free bond, Rf,t = 1/P b
t , we have

Rf,t

(
(1− γt)EtMt+1 + γt

(
αtM t+1 + (1− αt)M t+1

))
= 1. (7)

2.3 The Equity Premium

Subtracting (7) from (6) and rearranging terms yields the equity premium:

EtRt+1 −Rf,t = −Covt(Mt+1, Rt+1)

Et [Mt+1]︸ ︷︷ ︸
Risk Premium

+

[
(Rf,t −Rt+1)M t+1

]
αtγt

Et [Mt+1] (1− γt)︸ ︷︷ ︸
Speculation Premium

+

[
(Rf,t −Rt+1)M t+1

]
(1− αt)γt

Et [Mt+1] (1− γt)︸ ︷︷ ︸
Ambiguity Premium

. (8)

Equation (8) is a generalization of the classical Consumption CAPM formula that decomposes the

equity premium into three terms. The first term is the well-known risk-premium term from the

case with an expected utility representative agent. We refer to the second term as a speculation

premium, and it is negative, reflecting that investors pay to hold stocks that are more exposed to

market optimism (or a market boom). Ceteris paribus, the speculation premium becomes larger in
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magnitude with higher market optimism, αt, market positive skewness, Rt+1, or market ambiguity,

γt. The third term is an ambiguity premium that ceteris paribus becomes larger in magnitude with

higher market ambiguity aversion, (1−αt), market disaster risk (lower Rt+1), or market ambiguity,

γt. Equation (8) includes a role for market optimism (αt), ambiguity (γt), positive skewness (Rt+1),

and disaster risk (Rt+1), thereby unifying these strands of the asset pricing literature. Since (8) is

derived from a NEO-EU representative agent, we refer to (8) as the NEO-EU CAPM.

2.4 Best and Worst States

To operationalize the model, we parameterize the best and worst-case scenarios perceived by

the agent. To do so, let us have the following structure on the joint distribution of returns and

consumption growth

 rt+1

∆ct+1

 ∼ N

(µt

g

 ,

 q2t qtση

qtση σ2

), (9)

where rt+1 := log(Rt+1) and ∆ct+1 := log(Ct+1

Ct
). In the model, prices are endogenous to equate

both sides of (8). Still, since payoffs and endowments are exogenous, the model puts no restriction

on the joint distribution of returns and consumption, and (9) is a standard structure in the asset

pricing literature with ample empirical support.5

ASSUMPTION 1. In state s ∈ S in period t + 1, the agent’s perceived log return and log

consumption growth rate are rt+1(s) = µt + ξsqt and ∆ct+1(s) = g + ξsσ, respectively.

Under Assumption 1, the perceived highest and lowest returns across states are then rt+1 =

µt + ξqt and rt+1 = µt − ξqt, where ξ := maxs∈S ξs, and ξ := |mins∈S ξs|. Similarly, the perceived

highest and lowest consumption growth rates are ∆ct+1 = g+ ξσ and ∆ct+1 = g− ξσ. Assumption

1 specifies the perceived log return and consumption growth rate to be within an interval of their

expected means, and the interval size increases with conditional volatility. In our empirical work,

we consider the simplest case in which the endpoints of the interval are symmetric around the

mean, i.e., ξ := ξ = ξ.

5GARCH models are special forms of (9) where qt itself has additional structure. Further, a multivariate GARCH
model with both log return and log consumption growth rejects a time-varying correlation coefficient ηt.
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2.5 Approximations

This subsection shows how the NEO-EU representative agent and the best and worst-case state

Assumption 1 yield intuitive approximations for the equity premium and the variance risk premium.

PROPOSITION 1. (Market ambiguity attitude and the risk-return tradeoff) Under Assumption

1 with ξ = ξ = ξ, the equity premium for a NEO-EU agent with the CRRA utility is approximately

EtRt+1 −Rf,t ≈
(
1− 2αt + λσξ

)
ξγtqt. (10)

Proof. See the Appendix.

The approximation in (10) is accurate for reasonable values of the risk aversion parameter, for

example, λ ∈ [0, 2].6 The evidence for the accuracy for the approximation is presented following the

proof in the appendix. Unsurprisingly, the contribution of the covariance term in (8) to the equity

premium is negligible. However, a novel feature of the theory is that the risk aversion parameter

λ affects the equity premium by amplifying the effect of ambiguity and volatility, although the

contribution is still small. In the special case where λ = 0 (risk-neutrality), the equity premium

approximation in (10) is exact and takes the following simple form:

EtRt+1 −Rf,t =
(
1− 2αt

)
ξγtqt. (11)

The equity premium approximation in (11) most clearly distills the intuition for how ambiguity

attitudes affect the market risk-return tradeoff: The conditional equity premium is increasing in

market volatility, qt, but the slope of this relationship flattens as market ambiguity attitude becomes

more optimistic (as αt increases).

The variance risk premium (VRP) is the difference between the risk-neutral and physical market

variance, and it is commonly interpreted as a measure of economic uncertainty (Zhou, 2018; Bali

and Zhou, 2016). Formally, the VRP is defined as VRP t := VarQt Rt+1 − VartRt+1 (Zhou, 2018),

where VarQt is the conditional variance under the risk-neutral measure. The following proposition

presents a powerful formula to approximate the VRP for the NEO-EU agent.

6The seminal paper by Holt and Laury (2002) finds that the CRRA parameter estimated for their participants in
lab experiments is typically between 0 and 1. They classify a value greater than 1.37 as “stay in bed.” In investment
applications, Ferreira and Santa-Clara (2011) and Jondeau et al. (2019) assume a risk aversion parameter of 2.
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PROPOSITION 2. Under Assumption 1 with ξ = ξ = ξ, the variance risk premium for a

NEO-EU agent with the CRRA utility is approximately

VRP t ≈ γtq
2
t (ξ

2 − 1). (12)

Proof. See the Appendix.

The evidence for the accuracy of approximation (12) is presented following the proof in the

appendix. In Proposition 2, the VRP approximation is independent of the market ambiguity

attitude, αt. The propositions 1 and 2 thus provide a partial separation between ambiguity and

ambiguity attitude. Further, Proposition 2 provides a theoretical link between a market-based

measure of Knightian uncertainty (VRP) and a behavioral measure of Knightian uncertainty, γt,

while γt (scaled by the constant ξ2 − 1) serves as a wedge between VRP t and q2t .

2.6 Taking the Model to Data

In this subsection, we use the model expressions from the previous subsections to extract a

measure of ambiguity attitude αt. As our main specification we use the case in which λ = 0

(risk-neutrality), corresponding to the representation in (11) which clearly illustrates the intuition

linking market ambiguity attitude to the risk-return tradeoff. Theoretically, including a CRRA

parameter λ > 0 has virtually no effect on our results which focus on the time variation in the

equity premium and market crashes. We confirm this empirically in the Internet Appendix where

we outline the construction of αt for λ > 0 and show that the αt series using the case of log utility

(λ = 1) yields virtually identical empirical results in-sample and out-of-sample.

To construct αt in our benchmark case with λ = 0, we first estimate qt from a GARCH model

and use it to construct a measure of γt. Then, αt can be estimated using a Markov switching model.

The details are provided below.7 First, we measure qt via a simple GARCH(1,1) model for the log

7Empirically, our estimated measure of γt has a first-order autocorrelation of 0.46, while αt has a first-order
autocorrelation of 0.97. The high persistence of αt is consistent with the high persistent of market optimism that is
noted in prior work (Schmeling, 2007). Theoretically, the low persistence of market ambiguity, γt, arises naturally if
ambiguity changes (beliefs are updated and the ambiguity is resolved) in response to streams of new information each
period. In contrast, ambiguity attitudes are a trait that one might expect to be largely stable over time and which
depend on investors’ education, age, or other demographic factors, but which are subject to slow-moving fluctuations
(Grevenbrock et al., 2020) that may generate fluctuations in the optimism of the representative agent of the aggregate
market. For instance, regarding the dot-com bubble which is the period with the highest level of αt across our full
sample period, Greenwood and Nagel (2009) find that “around the peak of the technology bubble, mutual funds run
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returns, where pdt is the price-dividend ratio for the S&P 500 index and is used to construct a

measure of the expected equity premium:8

log(Rt+1) = θ0 + θ1pdt + ut+1, (13)

ut+1 = qt+1zt+1, with zt+1 ∼ N (0, 1) (14)

q2t+1 = ω0 + λ1u
2
t + β1q

2
t . (15)

In this specification, the log market return is linear in the price-dividend ratio (pdt), and the

error is assumed to follow a GARCH(1,1) process.9 Lemma 1 in Internet Appendix D shows that

the log return is approximately linear in the price-dividend ratio when we replace the payoff with

dividends. The estimation not only provides us with an estimate of the conditional market volatility

q̂t, but also yields a conditional market equity premium based on the conditional expected return

and the market risk free rate EtRt+1−Rf,t ≈ exp(θ̂0+ θ̂1pdt)−Rf,t.
10 For notational convenience,

we denote the conditional equity premium by EPt := EtRt+1 −Rf,t.

Having established a theoretical link between market ambiguity attitude and the risk-return

tradeoff, our next objective is to provide an estimate of the time series of αt using the structural

equations from the model under Assumption 1 and linear utility.

Second, following Zhou (2018) and Bekaert and Hoerova (2014), we use the square of the VIX

index as a proxy for the risk-neutral variance, VarQt Rt+1. Then using formula (12) we find γt to be:

γ̂t ≈
1

ξ2 − 1

(VIX2
t

q̂2t
− 1
)
. (16)

Finally, we use the relationship, EPt = ξ(1−2αt)qtγt from Equation (10) to estimate αt. In line

with the intuition that αt has persistent dynamics, we let αt follow a Markov-switching structure

with two states. Ang and Timmermann (2012) motivate regime switching models since they match

“the tendency of financial markets to often change their behavior abruptly and the phenomenon

that the new behavior of financial variables often persists for several periods after such a change.”

by younger managers are more heavily invested in technology stocks, relative to their style benchmarks, than their
older colleagues.”

8The dividend price ratio is also used as a proxy for the equity premium empirically in Pástor and Veronesi (2020)
and is closely related to the equity premium in traditional macro-finance models.

9The results of the GARCH regressions (13) - (15) are presented in Table 12 in Internet Appendix B.
10Allowing for the second order (Jensen) term virtually makes no difference in the final estimates.
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In the case of stock return predictability, a two-state regime-switching model can correspond to bull

and bear markets or expansions and recessions (Rapach and Zhou, 2013). Note that the relationship

implies ξ(1 − 2αt) =
EPt

qtγt
. Thus, if αt follows a Markov-switching model, so does the ratio

EPt

qtγt
.

To estimate αt, we estimate the following Markov-switching dynamic regression model:

ÊPt

q̂tγ̂t
= µmt + ϵt, (17)

where ϵt is a white noise and µmt switches between two regimes according to a probability matrix.

The quantity
EPt

qtγt
is a measure like a conditional Sharpe ratio but which includes a role for

market ambiguity, γt. In the Markov-Switching model there are two regimes: (i) a bear market

regime with relatively low prices and high expected future returns per unit of risk, and (ii) a bull

market regime with relatively high prices and low expected future returns per unit of risk. Market

optimism, αt, is then increasing in the probability of the bull market regime.

The dynamically estimated model gives us a predicted value of µ̂mt using the information up

to and including time t to avoid look-ahead bias. We then find our estimate of αt according to:

α̂t =
1

2

(
1− µ̂mt

ξ

)
. (18)

As ambiguity by itself has received much attention in prior literature, we focus on the time

series of market ambiguity attitude. This focus also reflects the motivation of the paper which is to

investigate if market ambiguity attitude restores the risk-return tradeoff which is predicted by the

theory studied here. Assuming γt has little or no predictive content due to its low autocorrelation,

qt and αt contain all of the information about the conditional equity premium in Equation (10).

2.7 The Level of Market Ambiguity and Ambiguity Attitude

We calibrate ξ, which parameterizes the number of standard deviations that form the interval

around the mean return, to 4.77 since it implies unconditional best-case return and worst-case

returns that are roughly consistent with common definitions of a bull market and a bear market in

the media and on Wall Street (Kurov, 2010) and since it is also consistent with the 20% threshold

used by Martin (2017) for a market crash. The specification does not rely on information in the out-
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of-sample period. Over the training sample period, the monthly mean market volatility, q, is 4.05%

and the monthly mean expected log market return from the GARCH model is 0.74%. Computing

the maximum return under Assumption 1 with these values yields R = 0.0074+4.77(0.0405) ≈ 0.20.

This is consistent with the threshold for a bull market (a return of 20% from a market’s recent

low). The corresponding worst-case return is approximately -0.19, and similar to the threshold for

a bear market (a return of -20% from a market’s recent high) as noted by Kurov (2010). Since ξ is

constant, ξ affects the level but not the time variation of αt. Consequently, our results are robust

to different values of ξ. Of particular note, our main metrics for forecast evaluation (the in-sample

and out-of-sample R2 and the difference in cumulative sum of squared forecast errors presented

in Section 3) are identical for all ξ ∈ [2, 4.79].11 For ξ = 4.77, the corresponding mean value of

αt is 0.27 (with a standard deviation of 0.16), reflecting a moderate level of ambiguity aversion,

and γt = 0.05 (with a standard deviation of 0.06), indicating that the representative agent of the

aggregate market is, on average, close to the expected utility benchmark (γt = 0).

2.8 Market Ambiguity Attitude and Market Risk-Neutral Skewness

This subsection motivates and illustrates what αt captures empirically. Intuitively, a smaller αt,

consistent with a more pessimistic NEO-EU representative agent, leads to greater negative skewness

of the risk-neutral probability density. That is, one might expect the skewness of the risk-neutral

density to increase in αt. We also expect two other stock market variables, the risk-free rate and

the market price-dividend ratio to be increasing in αt as these predictions follow theoretically from

Equation (7) and Lemma 1, respectively. To test these predictions, we correlate αt with market

risk-neutral skewness (RNS), the log risk-free rate (rf ), and the price-dividend ratio (pd). We

also include the two other stock market variables (q and VIX) that, along with pd, are used in

the construction of αt. The correlations are shown in Figure 1. We find that αt is positively and

significantly related to rf , pd, and RNS, supporting the theoretical predictions and intuition.

We plot αt and RNS to visualize the relationship, and we conduct Granger causality tests to

infer potential dependencies between αt and RNS.12 We find a positive and significant correlation

11A positive feature of a specification with ξ ≤ 4.79 is that αt ∈ (0, 1) for all periods in our sample spanning
more than 30 years of monthly data. Under specifications with ξ ≥ 4.80, the estimated α becomes negative in some
periods. Truncating αt at zero in those periods will slightly affect the R2. We further clarify that ξ should be large
enough to leave the distribution virtually unchanged, which is why we view 2 as a natural lower bound for ξ.

12Market risk-neutral skewness is measured from the SKEW index of the CBOE. The SKEW index was introduced
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Table 1. Granger causality tests between α and Market Risk-Neutral Skewness

BIC AIC

α ̸→ RNS 0.010∗∗ 0.035∗∗

RNS ̸→ α 0.848 0.807

Notes: The Granger causality tests are conducted for both the optimal lag length (one period) under the Bayesian

Information Criterion (BIC) and for the optimal lag length (two periods) under the Akaike Information Criterion

(AIC). The p-values of the tests are reported. ∗∗ denotes the 5% level of statistical significance. The tests are for the

out-of-sample period (2006:07 through 2022:12).

of 0.40 between αt and RNS across the out-of-sample period. When graphing this relationship,

shown in Figure 1, it is apparent that αt looks like a smooth version of RNS. These observations

indicate that market ambiguity attitude, αt, contains information about low-frequency movements

(and hence the more predictable variation) in RNS. We next conduct Granger causality tests using

the optimal lag lengths according to the Bayesian Information Criterion (one period) and according

to the Akaike Information Criterion (two periods). As shown in Table 1, αt significantly Granger

causes RNS, whereas RNS does not Granger cause αt, implying that αt predicts RNS.

3 Market Ambiguity Attitude and the Risk-Return Tradeoff

3.1 Data Sources

We obtain data on the market excess return and risk-free rate from Kenneth French’s data

library which we use to construct the log equity premium. We obtain data on VIX, from the

website of the CBOE. We obtain data on the market price-dividend ratio (pd) from Robert Shiller’s

website. These variables are used in the construction of our measure of market ambiguity attitude

as outlined in Section 2.6. The sources of all data series used in our analysis are provided in

Appendix A of the Internet Appendix. Summary statistics of the log equity premium, pd, and

VIX, along with qt, αt, and αtqt (the primary variables used in our analysis) are provided in Table

2. Our control variables noted in the following sections are provided in Internet Appendix A.

as an “indicator that measures perceived tail risk” and the CBOE notes that it is intended to be complementary to
the VIX index (CBOE, 2011). Formally, RNS = E[(R−µ

σ
)3], where R is the 30-day log-return on the S&P 500, µ and

σ are respectively the mean and standard deviation of R, x := (R−µ
σ

)3 and RNS = E[x]. RNS is obtained from the
SKEW index by the relation RNS = 100−SKEW

10
. The series is converted from the daily frequency to the monthly

frequency using the last observation in each month as the RNS value for that month.
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Figure 1. NEO-EU Optimism (α) and Market Risk-Neutral Skewness (RNS)
-4

-2
0

2

2010m1 2020m1

α (standardized) RNS (standardized)

Correlations between α and Aggregate Stock Market Variables

α q VIX pd rf RNS

α 1.00
q 0.44∗∗∗ 1.00
VIX 0.48∗∗∗ 0.66∗∗∗ 1.00
pd 0.22∗∗∗ -0.31∗∗∗ -0.29∗∗∗ 1.00
rf 0.23∗∗∗ -0.29∗∗∗ -0.16∗∗ 0.12∗ 1.00
RNS 0.40∗∗∗ 0.32∗∗∗ 0.36∗∗∗ -0.37∗∗∗ 0.22∗∗∗ 1.00

* p < 0.10, ** p < 0.05, *** p < 0.01

Notes: The figure displays the time series of the market risk-neutral skewness (RNS) from the Chicago Board of

Options Exchange, and the recursively updated market ambiguity attitude series (α). The figure spans the out-of-

sample period for α (the second half of the sample, 2006:07 through 2022:12). Over this period, the correlation

between the two series is 0.40. For the purpose of comparison, both series have been standardized to have a mean

of zero and a standard deviation of one over this period. Shaded areas show NBER recession periods. The table

displays the correlations between six variables related to the aggregate stock market over the out-of-sample period:

(i) the index of market ambiguity attitude, αt; (ii) the conditional stock market volatility, q; (iii) VIX; (iv) the

price-dividend ratio of the S&P 500 (pd); (v) the log risk-free rate, rf ; and (vi) RNS.
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Table 2. Summary Statistics of Primary Variables

Variable Mean Std Dev. Skewness Kurtosis Min Median Max

ret 0.57 4.49 -0.76 4.45 -18.89 1.18 12.80
pdt 52.96 13.91 0.41 2.97 25.75 51.76 90.21
VIXt 5.71 2.20 1.64 7.10 2.75 5.22 17.29
qt 4.21 1.46 1.25 5.05 2.18 3.95 10.18
αt 0.27 0.16 0.28 1.86 0.00 0.20 0.52
αtqt 1.24 0.97 0.76 2.59 0.01 0.82 4.63

Notes: This table reports the monthly summary statistics of the primary variables used in our analysis: The realized

log market excess return, ret (in percent); VIXt (in percent), the price-dividend ratio (pdt) of the S&P 500 index,

the conditional market volatility, qt (in percent), estimated from the GARCH(1,1) model in Section 2.6; market

ambiguity attitude, αt; and the product αtqt. Values are rounded to the nearest two decimal places.

3.2 Testing the Risk-Return Tradeoff

Under Proposition 1, there is a positive relationship between the conditional market volatility, qt,

and the expected equity premium, but the slope of this relationship flattens as market optimism,

αt, increases. That is, the expected equity premium is increasing in qt but decreasing in αtqt.

Our first analysis is motivated by three basic questions: First, does market ambiguity attitude

moderate the risk-return tradeoff as predicted by Proposition 1? Second, if so, is the predictive

power of market volatility, qt, and the interaction between market ambiguity attitude and market

volatility, αtqt subsumed by standard equity premium predictors? Third, what is the incremental

increase in predictive power generated by including αtqt in the predictive regressions? To probe

these questions, we consider 25 equity premium predictors consisting of the 14 predictors in Welch

and Goyal (2008) available at the monthly frequency and the 11 newer predictors used by Cederburg

et al. (2023) for which data is available beginning in 1990.13 For qt and αt, our data begins in 1990

(the first year available for VIX which is needed for the construction of αt).

Table 3 reports predictive regressions following Equation (19). In the full specification, the

dependent variable is the (realized, cumulative) log equity premium, denoted re[t+1,t+h], where

h ∈ {1, 3}, corresponding to the one-month log equity premium in period t and the cumulative

three-month log equity premium, respectively. The lagged predictors include market volatility (qt),

the product of ambiguity attitude and volatility (αtqt), and a set of k alternative predictors. We

13This criterion enables us to include predictors that span the period 1990 - 2021, and omits only the left-tail
jump variation (LJV) predictor from Cederburg et al. (2023) for which available data begins in 1996. Including that
variable does not affect the results.
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consider the case with lagged volatility as the only regressor, as well as cases with αtqt and controls.

re[t+1,t+h] = β0 + β1qt + β2αtqt +Σk
i=3βixi,t + ϵ[t+1,t+h]. (19)

In Equation (19), k denotes the total number of predictor variables in the regression. Odd-

numbered regressions in Table 3 do not include αtqt, while this term is included in even-numbered

regressions. Regressions summarized in columns (1), (2), (9), and (10) show our baseline results

without controls. All data is updated from the original studies to span from 1990:02 - 2021:12.

In Table 3, for ease of interpreting the estimated coefficients, the predictors qt and αtqt are

divided by their full-sample standard deviation. Regression specification (2) in the top panel of

Table 3 which includes both qt and αtqt reveals that a one standard deviation increase in the

conditional market volatility leads to an increase in the future realized log equity premium of

1.35% per month. In contrast, a one standard deviation increase in the product of market volatility

and market optimism, αtqt, leads to a decrease in the future equity premium of -1.36% per month.

Both coefficients have t-statistics above three, and are economically large.

Table 3 answers our three questions. Regarding the first question, the table shows in Column (1)

of Panels A and B that the relationship between ret+1 and lagged market volatility is not significant

at the monthly or quarterly horizon. These regressions confirm the findings of Campbell (1987) and

Barroso and Maio (2023) that the risk-return relationship is neither strong nor robust in the data.

The regressions reveal that the absence of a risk-return tradeoff for the aggregate stock market

continues to be a puzzle even when using more recent data than prior studies. In contrast, adding

the interaction between market ambiguity attitude and market volatility to the regression yields a

significant positive relation between ret+1 and lagged market volatility, qt, and a significant negative

relationship between ret+1 and lagged αtqt as noted in the preceding paragraph. These findings

support the theoretical prediction that market ambiguity attitude restores the risk-return tradeoff.

Regarding our second question, Table 3 shows that neither the Welch and Goyal (2008) or

Cederburg et al. (2023) predictors subsume the risk-return tradeoff results. In all eight specifications

where qt and αtqt are both included in the regressions, the coefficient on qt is positive and significant

while the coefficient on αtqt is negative and significant, even in the presence of 25 standard equity

premium predictors as controls. In the absence of αtqt, the coefficient on qt is significant in the
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Table 3. Market Ambiguity Attitude and the Risk-Return Tradeoff controlling for 25 Predictors

Monthly Forecast Horizon

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1

qt 0.30 1.35∗∗∗ 1.49∗∗∗ 2.73∗∗∗ -0.10 1.71∗∗∗ 1.10∗∗ 2.86∗∗∗

(1.18) (5.44) (4.07) (4.45) (-0.28) (2.98) (2.34) (3.56)

αtqt -1.36∗∗∗ -1.90∗∗∗ -2.10∗∗∗ -2.34∗∗∗

(-3.87) (-2.70) (-4.40) (-3.18)

GWt NO NO YES YES NO NO YES YES
CJOt NO NO NO NO YES YES YES YES
k 1 2 15 16 12 13 26 27

adj. R2 0.002 0.037 0.050 0.078 0.041 0.083 0.080 0.113

Quarterly Forecast Horizon

(9) (10) (11) (12) (13) (14) (15) (16)
Panel B re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3]

qt 0.92 3.89∗∗∗ 3.70∗∗∗ 6.68∗∗∗ -1.29 3.49∗∗∗ 1.92∗∗ 5.86∗∗∗

(1.38) (5.63) (4.92) (6.63) (-1.46) (3.66) (2.08) (4.57)

αtqt -3.86∗∗∗ -4.53∗∗∗ -5.55∗∗∗ -5.23∗∗∗

(-4.07) (-3.50) (-6.71) (-4.66)

GWt NO NO YES YES NO NO YES YES
CJOt NO NO NO NO YES YES YES YES
k 1 2 15 16 12 13 26 27

adj. R2 0.011 0.108 0.188 0.241 0.158 0.256 0.291 0.346

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium (in percent) against market volatility, q, and the set

of 14 monthly equity premium predictors in Welch and Goyal (2008), the set of 11 newer equity premium predictors

used by Cederburg et al. (2023) for which data are available beginning in January, 1990, and both sets of predictors.

Even-numbered regressions also include αq. In the regression specifications in Panel A, the dependent variable is the

one-month log equity premium, ret+1, and all predictor variables are lagged by one month (monthly forecast horizon).

In the regression specifications in Panel B, the dependent variable is the cumulative three-month log equity premium,

re[t+1,t+3], and all predictors are lagged three months (quarterly forecast horizon). The GW row indicates whether

the 14 monthly Welch and Goyal (2008) predictors are included as controls. The CJO row indicates whether the 11

Cederburg et al. (2023) predictors available starting in January, 1990, are included as controls. k denotes the number

of predictor variables in the regression including qt and the control variables, and αtqt where applicable. For ease of

interpreting the coefficients, qt and αtqt are divided by their (full sample) standard deviation. The sample period

spans monthly data from 1990:01 through 2021:12.
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presence of the Welch and Goyal (2008) predictors. Hence, the large set of predictors also affects

the risk-return tradeoff. This result is consistent with the Welch and Goyal (2008) predictors

representing time-varying macroeconomic risk, which is complementary to qt and αtqt.

Regarding the third question, Table 3 shows that including αtqt in the kitchen sink regressions

substantially improves the predictive power. For instance, the adjusted R2 for regression specifi-

cation (5) in the table which includes the 11 recent predictors in Cederburg et al. (2023) is 4.1%.

Adding αtqt to that regression roughly doubles the adjusted R2 to 8.3%. The adjusted R2 in regres-

sion specification (7) which includes qt in addition to 25 established equity premium predictors is

8%. Adding αtqt to that regression increases the adjusted R2 by over 3 percentage points to 11.3%.

That αt substantially enhances return predictability and the significance of market volatility in the

presence of 25 standard equity premium predictors further supports our conclusion that αt is a

missing state variable that restores the risk-return tradeoff.

3.3 Sentiment, Ambiguity, Disagreement, and the Risk-Return Tradeoff

We next test the robustness of our findings to the inclusion of other variables that are potentially

related to the risk-return tradeoff. Do these additional variables subsume the predictability of

market ambiguity attitude? Yu and Yuan (2011) find that market sentiment, proxied by the Baker

and Wurgler (2006) market sentiment index, affects the risk-return tradeoff. Since the Baker and

Wurgler (2006) index and αt are both measures of aggregate market optimism, we anticipate they

will be positively related. Indeed we find they have a significant 0.39 correlation. We test here if

the sentiment index subsumes the explanatory power of market ambiguity attitude. To investigate

this, we run versions of regression (20) which includes qt, αtqt, and a control variable, xt:

re[t+1,t+h] = β0 + β1qt + β2αtqt + β3xt + ϵ[t+1,t+h]. (20)

xt ∈ {sentimentt, disaster probabilitiest, ambiguityt, PLS disagreementt, analyst disagreementt,

average skewnesst, risk aversiont} and h ∈ {1, 3}. In addition to the Baker and Wurgler

(2006) index (sentimentt), we use other control variables, including the time-varying U.S. dis-

aster probabilities of Barro and Liao (2021) (disaster probabilitiest), the ambiguity measure of

Brenner and Izhakian (2018) (ambiguityt), the partial least squares (PLS) disagreement measure
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of Huang et al. (2021) (PLS disagreementt), the analyst disagreement measure of Yu (2011)

(analyst disagreementt), the value-weighted average skewness of Jondeau et al. (2019) (average

skewnesst), and the time-varying risk aversion of Bekaert et al. (2022) (risk aversiont). We also

conduct a kitchen sink regression including all controls.14

Table 4 shows that the coefficient on volatility remains positive and significant and the coefficient

on the interaction term αtqt remains negative and significant, in the presence of all controls. The

kitchen sink regressions reveal that a one-standard deviation increase in qt predicts a 1.32% increase

in monthly returns and a 3.57% increase in quarterly returns, while a one standard deviation

increase in αtqt predicts a 1.59% decrease in monthly returns and a 4.76% decrease in quarterly

returns. Adding αtqt to the kitchen sink regressions increases the adjusted R2 by 2.1 percentage

points at the one-month horizon, and by 6.5 percentage points at the quarterly horizon. In contrast,

the control variables are generally insignificant and their predictive power is not robust across both

monthly and quarterly horizons with the exception of the PLS disagreement index.

3.4 Out-of-Sample Regressions

Following Welch and Goyal (2008), it is increasingly common to test if evidence of return

predictability from in-sample regressions also holds out-of-sample. Consequently, we investigate

the risk-return tradeoff and the predicted moderating effect of α in out-of-sample regressions. We

use three standard metrics to evaluate out-of-sample (OOS) predictability: (1) the R2
OS statistic

of Campbell and Thompson (2008); (2) the MSPE-adjusted statistic of Clark and West (2007)

which we use to measure the statistical significance of the predictability; and (3) the difference in

cumulative sum of squared errors between the historical average equity premium forecast and the

forecast based on predictor variables (Welch and Goyal, 2008). The R2
OS statistic is defined in (21):

R2
OS = 1−

∑T
t=1(rt − r̂t)

2∑T
t=1(rt − rt)2

, (21)

where rt is the realized log equity premium, r̂t is the forecast from the predictive regression using

information through period t, and rt is the mean historical equity premium through period t.

14The measure in Brennan et al. (2004) is an index of ambiguity whereas αt in the present paper is a measure of
ambiguity attitude. In contrast to our approach, the ambiguity attitude in Brennan et al. (2004) is not time-varying.
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Table 4. Market Ambiguity Attitude and the Risk-Return Tradeoff with additional controls

Monthly Horizon (1) (2) (3) (4) (5) (6) (7) (8)
Predictor ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1

qt 1.29∗∗∗ 1.21∗∗∗ 1.41∗∗∗ 0.92∗∗∗ 1.41∗∗∗ 1.37∗∗∗ 1.30∗∗∗ 1.32∗∗

(4.63) (3.10) (4.78) (4.01) (5.35) (5.28) (3.10) (2.46)

αtqt -1.23∗∗∗ -1.47∗∗∗ -1.50∗∗∗ -0.79∗ -1.30∗∗∗ -1.29∗∗∗ -1.37∗∗∗ -1.59∗∗

(-2.75) (-4.66) (-3.98) (-1.91) (-3.68) (-3.55) (-4.16) (-2.38)

sentimentt -0.15 0.04
(-0.53) (0.15)

disaster probabilitiest 0.39 1.75∗

(0.53) (1.70)
ambiguityt -0.38 -0.15

(-1.38) (-0.40)
PLS disagreementt -0.66∗∗∗ -0.44

(-3.05) (-1.60)
analyst disagreementt -0.11 -0.79∗∗∗

(-0.52) (-2.91)
average skewnesst -0.11 -0.21

(-0.36) (-0.73)
risk aversiont 0.09 -1.38

(0.14) (-1.27)

N 389 319 344 347 383 383 394 292
adj. R2 0.037 0.043 0.046 0.052 0.037 0.037 0.035 0.070
∆ adj. R2 0.021 0.042 0.044 0.008 0.034 0.033 0.036 0.021

Quarterly Horizon (9) (10) (11) (12) (13) (14) (15) (16)
Predictor re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3]

qt 3.47∗∗∗ 2.83∗∗∗ 3.88∗∗∗ 2.56∗∗∗ 4.01∗∗∗ 3.76∗∗∗ 3.64∗∗∗ 3.57∗∗∗

(4.50) (2.71) (4.80) (4.79) (5.65) (5.37) (3.97) (3.45)

αtqt -3.35∗∗∗ -4.32∗∗∗ -4.21∗∗∗ -2.20∗∗ -3.68∗∗∗ -3.57∗∗∗ -3.90∗∗∗ -4.76∗∗∗

(-2.97) (-4.93) (-4.10) (-2.40) (-3.89) (-3.70) (-4.29) (-4.37)

sentimentt -0.64 0.26
(-0.94) (0.39)

disaster probabilitiest 1.93 6.67∗∗∗

(3.30) (0.97)
ambiguityt -1.06 -0.08

(-1.61) (-0.09)
PLS disagreementt -1.84∗∗∗ -1.23∗

(-3.25) (-1.75)
analyst disagreementt -0.60 -2.88∗∗∗

(-1.02) (-4.20)
average skewnesst -0.99∗∗∗ -0.98∗∗

(-2.60) (-2.39)
risk aversiont 0.41 -4.82∗∗∗

(0.32) (-2.87)

N 389 319 344 347 383 383 392 292
adj. R2 0.110 0.133 0.124 0.136 0.106 0.117 0.107 0.263
∆ adj. R2 0.054 0.120 0.113 0.022 0.090 0.083 0.098 0.065

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium (re[t+1,t+h]) in percent, against the conditional

stock market volatility (qt) and the product of market volatility and market ambiguity attitude (αtqt) controlling

for market sentiment (Baker and Wurgler, 2006), time-varying disaster probabilities (Barro and Liao, 2021), market

ambiguity (Brenner and Izhakian, 2018), the partial least squares (PLS) disagreement index (Huang et al., 2021),

analyst disagreement (Yu, 2011), value-weighted average skewness (Jondeau et al., 2019), and time-varying risk

aversion (Bekaert et al., 2022). The top and bottom panels display results at the monthly (h = 1) horizon and the

quarterly (h = 3) horizon. For ease of interpreting coefficients, each variable is divided by its unconditional standard

deviation over the subset of our sample period (1990:01 - 2022:12) for which data is available. The number (N) of

observations in each regression, the adjusted R2 and the increase in adjusted R2 (∆ adj. R2) from including αtqt are

also shown. 22



Figure 2. OOS Equity Premium Prediction with Volatility and Optimism (One-Month Forecast)
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Notes: This figure displays the difference in cumulative sum of squared errors, ∆CSSEOOS , between the one-month-

ahead forecast of the log equity premium based on the historical average and the one-month-ahead forecast based

on (i) the conditional market volatility from a GARCH(1,1) model (from Section 2.6) in the left panel and (ii) the

product of the conditional market volatility and the conditional market ambiguity attitude in the right panel. The

out-of-sample period spans the second half of the sample, 2006:07 - 2022:12. Shaded periods are NBER recessions.

Table 5. R2
OS for the Risk-Return Tradeoff

Monthly Horizon Quarterly Horizon Six-Month Horizon Annual Horizon

Predictors R2
OS CW R2

OS CW R2
OS CW R2

OS CW

qt -0.16 -0.44 -1.68 -1.07 -1.73 -1.78 -8.42 -3.83∗∗∗

qt, αtqt 4.06 2.55∗∗ 12.73 4.03∗∗∗ 19.14 4.23∗∗∗ 11.07 4.53∗∗∗

Notes: The table displays the Campbell and Thompson (2008) R2
OS statistic (in percent) for predictor variables at

the monthly, quarterly, six-month, and annual forecast horizons of the log equity premium. The dependent variable is,

respectively, the one-month, cumulative three-month, cumulative six-month, and cumulative twelve-month log equity

premium. The sets of predictors are market volatility (qt), and volatility and the product of volatility and ambiguity

attitude (qt, αtqt). CW is the Clark and West (2007) MSPE-adjusted statistic. ∗∗ and ∗∗∗ denotes significance at the

5%, and 1% levels. The out-of-sample period spans the second half of the sample, 2006:07 - 2022:12.

Table 5 displays the R2
OS statistics for the out-of-sample predictive regressions based on qt and

{qt, αtqt} as predictors. From Table 5, we see that market volatility alone does not have out-of-

sample predictive power, with a negative R2
OS at each horizon. In contrast, qt and αtqt jointly

produce a positive R2
OS statistic above 4% at the one-month horizon, which increases to 12.73%

for cumulative three-month returns and to 19.14% for cumulative six-month returns. That αt,

when combined with market volatility, produces such large increases in out-of-sample predictability

reinforces our conclusion that αt is a missing state variable that restores the risk-return tradeoff.

Figure 2 plots the evolution of the forecast performance of market volatility (left panel) and of
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market volatility and the product of ambiguity attitude and volatility (right panel) over the out-

of-sample period (2006:07 - 2022:12). The difference between the two panels is striking. Market

volatility has greater cumulative sum of squared forecast errors than the historical average equity

premium forecast throughout the sample period. In contrast, the forecast in the right panel has a

consistent upward trend, indicating our model forecasts are outperforming the benchmark.

4 Market Ambiguity Attitude, Market Crashes, and Recessions

We next examine the link between market ambiguity attitude, stock market fluctuations, and

business cycles. Under the theory in Section 2, higher market ambiguity attitude reflects a more

over-valued market relative to the expected utility benchmark. In the Markov-switching model, a

high αt also coincides with a regime in which
EPt

qtγt
is low, which corresponds on average to low

expected market excess returns and high conditional market volatility. Large market declines are

natural consequences of a regime with low expected returns and high volatility.

The predictive ability of αt might also reflect time-varying macroeconomic risk linked to the

real economy. If αt is mean-reverting, and if the economy slows down due to a decline in the repre-

sentative agent’s αt (i.e., if a decline in optimism reduces consumption expenditures by consumers

and investment by firms), then high αt could positively forecast recessions. We consider these two

channels through which αt might predict future returns. Our tests confirm that αt predicts stock

market fluctuations (returns and crashes) and business cycle fluctuations (recessions).

4.1 Market Ambiguity Attitude and Market Crashes

Panel A of Table 6 provides evidence that a high level of αt systematically precedes large market

declines. The table shows the frequency of large market declines (one-month market returns below

-10% (top row) and below -5% (bottom row) in three sample cases. For the full sample, there were

six market crashes of at least 10%, that occurred in roughly 1.5% of the periods, and 39 market

crashes of at least 5% that occurred in approximately 10% of the periods. The second column of

Table 6 is the frequency of crashes that occurred in periods in which αt was in the top 33% of αt

values within the preceding three months (across the full sample of αt values). The table shows that

a high level of market ambiguity attitude in the three months prior to a given period t increases
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Table 6. Frequency of Market Crashes and Recessions

Frequency of Market Crashes Crashes Predicted

Panel A Unconditional α (Top 33%) α (Bottom 67%) α (Top 33%)

10% Market Declines 1.53% (6) 4.14% (6) 0.00% (0) 100.00% (6)
5% Market Declines 9.95% (39) 19.31% (28) 4.45% (11) 71.79% (28)

Frequency of NBER Recession Periods Recessions Predicted

Panel B Unconditional α (Top 33%) α (Bottom 67%) α (Top 33%)

NBER Recessions 9.18% (36) 17.93% (26) 4.05% (10) 72.22% (26)

Notes: Panel A (Panel B) displays the frequency of large market declines (NBER recessions) in percent, with the

total number in parentheses, across the (i) full sample period, denoted “Unconditional”; (ii) across periods in which

α surpassed the top 33% of full-sample α values within the preceding three months; (iii) across periods in which α did

not surpass the top 33% of α values within the preceding three months. The fourth column displays the proportion

of realized crashes (recessions) that occurred in a period in which α surpassed the top 33% of α values within the

preceding three months. The first and second rows of Panel A display the results for one-month declines in the market

exceeding 10% and exceeding 5%, respectively. The data covers the period from 1990:01 - 2022:12.

the frequency of 10% crashes in period t to above 4%, more than double the unconditional average.

The frequency of 5% crashes also roughly doubles to nearly 20%. In contrast, none of the 10%

market declines and less than five percent of the 5% market declines occurred in periods in which

αt was not in the top 33% of αt values in the preceding three months. The fourth column in Table

6 presents the frequency of a high level of αt in the preceding three months, given a crash occurred

in period t. All six crashes of at least 10% occurred in periods in which αt was in the top 33% of

αt values in the previous three months. The bottom row shows that roughly 72% of all 5% crashes

occurred in periods in which αt was in the top 33% of all αt values in the previous three months.

Table 7 uses logistic regressions to test whether αt predicts 5% or 10% market crashes. The

left-hand-side variable is an indicator of either a 10% crash or 5% crash. Our baseline specification

summarized in column (1) (for a 10% crash) and column (7) (for a 5% crash) includes only αt on

the right-hand-side (lagged three months). The remaining columns include controls (qt, VIX, pd),

each lagged three months, which are used in the construction of αt and the measure of time-varying

risk aversion, rat, from Bekaert et al. (2022). These variables are plausible predictors of a market

crash. Table 7 shows αt is a significant predictor of both 10% and 5% crashes at the quarterly

horizon and that its predictive power is not subsumed by q, VIX, pd, or rat.
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Table 7. Predicting Market Crashes with Market Ambiguity Attitude

Logistic Regressions for Predicting Market Crashes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
-10% -10% -10% -10% -10% -10% -5% -5% -5% -5% -5% -5%

αt−3 1.65∗∗∗ 1.58∗∗∗ 1.58∗∗∗ 2.38∗∗∗ 1.60∗∗∗ 3.24∗∗∗ 0.77∗∗∗ 0.81∗∗∗ 0.81∗∗∗ 0.83∗∗∗ 0.71∗∗∗ 1.17∗∗∗

(4.06) (3.47) (3.15) (3.60) (3.39) (5.43) (4.19) (3.89) (3.60) (3.14) (3.71) (3.45)

qt−3 0.31 0.01 -0.08 -0.25
(0.46) (0.02) (-0.38) (-1.11)

VIXt−3 0.17 -2.85∗∗ -0.07 -1.69∗∗∗

(0.27) (-2.44) (-0.26) (-3.31)

pdt−3 -0.69 -0.41 -0.08 0.12
(-1.15) (-0.64) (-0.35) (0.49)

rat−3 0.32 2.18∗∗ 0.16 1.55∗∗∗

(1.18) (2.13) (1.14) (3.58)

Pseudo R2 0.164 0.171 0.167 0.199 0.189 0.285 0.079 0.080 0.080 0.080 0.084 0.134

Robust Z statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays the slope coefficients from logistic regressions. In columns (1) - (6), the left-hand-side

variable equals one in period t if a market return less than -10% occurred in period t, and zero otherwise. In columns

(7) - (12), the left-hand-side variable equals one in period t if a market return less than -5% occurred in period t,

and zero otherwise. The right-hand-side variables (each lagged three months) are the market ambiguity attitude. α,

the conditional market volatility, q, the VIX index of the Chicago Board of Options Exchange, the price-dividend

ratio, pd, of the S&P 500 index, and the measure of time-varying risk aversion, ra, from Bekaert et al. (2022). The

results are shown for the full sample period (1990:01 - 2022:12). For convenience in interpreting the coefficients, each

right-hand-side variables is divided by its full-sample standard deviation.

4.2 Market Ambiguity Attitude and NBER Recessions

Table 6, Panel B, shows that 72% of all recession periods across our sample period occur when

α is within the top 33% of α values in the preceding three months. At such times, the unconditional

frequency of NBER recessions for our sample period (9.18%) nearly doubles to 17.93%.

Table 8 summarizes logistic regressions with α as a predictor variable for recessions at the three-

month horizon with various sets of control variables.1516 Table 8 shows α significantly predicts

recessions across each set of control variables. Adding α to regression specification (7) with all

eight control variables increases the Pseudo R2 by 11 percentage points.

15Similar results are obtained using probit regressions.
16Liu and Moench (2016) identify the term spread and the aggregate stock market return as the two strongest

recession predictors at short horizons including the three-month horizon. Guha and Hiris (2002) find that credit
spreads also predict recessions. We thus include as controls the term spread, TMS (the difference between the long-
term yield on U.S. government bonds and the U.S. treasury bill), the aggregate stock market return, Rm, and the
default yield spread, DFY (the difference between BAA and AAA-rated corporate bond yields). These variable each
significantly predict recessions over our sample period. We also include the variables used in the construction of α
(q, VIX, and pd), along with the Baker and Wurgler (2006) sentiment index, the Bekaert et al. (2022) risk aversion
index, and the lagged NBER recession indicator. In regression specification (6), both α and risk aversion positively
and significantly predict recessions, although risk aversion in not significant in the kitchen sink specification in (7).
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Table 8. Predicting Recessions with Market Ambiguity Attitude

Logistic Regressions for Predicting Recessions

(1) (2) (3) (4) (5) (6) (7)
REC REC REC REC REC REC REC

αt−3 0.85∗∗∗ 0.79∗∗∗ 0.77∗∗∗ 1.95∗∗∗ 0.79∗∗∗ 0.65∗∗∗ 3.29∗∗∗

(4.68) (3.18) (3.00) (6.06) (4.46) (3.16) (4.04)

Lagged Recession Predictors NO YES NO NO NO NO YES

Lagged Recession Indicator NO NO YES NO NO NO YES

Lagged α Ingredients NO NO NO YES NO NO YES

Lagged Sentiment Index NO NO NO NO YES NO YES

Lagged Risk Aversion Index NO NO NO NO NO YES YES

Pseudo R2 0.093 0.277 0.448 0.288 0.099 0.171 0.682
∆(Pseudo R2) 0.093 0.051 0.040 0.134 0.066 0.043 0.110

Robust z statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table displays the coefficients from logistic regressions. The left-hand-side variable is the NBER recession

indicator (REC), which equals one in period t if there was a recession in period t and equals zero otherwise. The

right-hand-side variables (lagged three months) include α and eight control variables: three “recession predictors”

(the term spread, TMS, the default yield spread, DFY, and the aggregate stock market return, Rm); the three “α

ingredients” (q, VIX, and pd); Baker and Wurgler (2006) sentiment index; Bekaert et al. (2022) risk aversion index;

and the lagged NBER recession indicator. The table covers the period from 1990:01 - 2022:12, except in regression

specification (2) which ends in 2021:12, specification (5) which ends in 2022:06, and specification (6) which ends in

2021:12 due to data availability. ∆(Pseudo R2) denotes the change in Pseudo R2 from including α in the regression

relative to an otherwise identical regression that excludes α. For convenience in interpreting the coefficients, α is

divided by its full-sample standard deviation.

5 The Value of Information in Market Ambiguity Attitude

Suppose the equity premium is increasing in qt and decreasing in αtqt as our results suggest.

Consider a setting with a textbook mean-variance investor who cannot affect prices and wants to

construct a dynamic portfolio that exploits the predictive power in qt and αt. How does such an

investment strategy perform relative to that of an agent who trades assuming the equity premium is

increasing in qt (neglecting a role for αt) or who adopts a buy-and-hold strategy, passively holding

the market portfolio? To investigate this, we construct an out-of-sample trading strategy using

the classical Merton (1969) investment and asset allocation model. Doing so provides a strong

out-of-sample test of the quality and value of forecasts generated by qt and αtqt.

We next consider the investment performance of a portfolio that uses the equity premium

forecasts generated by qt and αtqt. As discussed by Ferreira and Santa-Clara (2011), Jondeau et al.
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(2019), and Giglio et al. (2021), we use the formula for Markowitz optimal weight on the market

portfolio, wt = [Et[Rt+1] − Rf,t]/[λq
2
t ]. Following Jondeau et al. (2019) we set the risk aversion

parameter to λ = 2 and add the realistic portfolio constraint that wt ∈ [0, 2] which excludes short-

selling and permits at most 100% leverage. The ex post portfolio excess return, Re
p,t+1, at the end

of month t+1 is then Re
p,t+1 = wt R

e
m,t+1, where R

e
m,t+1 denotes the market excess return in period

t + 1. As noted by Jondeau et al. (2019), repeating this process for each period from the first

out-of-sample period through the end of the sample period, yields a time series of ex post excess

returns for each optimal portfolio. We will evaluate the performance of each portfolio according to

the portfolio’s realized Sharpe ratio during the out-of-sample period and the certainty equivalent

return on portfolio p for a mean-variance investor, defined as CER = Rp − (λ/2)σ2
p, where σ2

p is

the variance of the portfolio return. This quantity is the risk-free return that would make a mean-

variance investor with risk aversion λ indifferent between that return and investing in portfolio p.

We also test if the investment strategies earn significant risk-adjusted returns relative to the Fama

and French (2018) six factor model and the Hou et al. (2021) five-factor q-factor model.

We consider three equity premium forecasts at the one month horizon. The sets of predictors

used to generate the forecasts are: (i) qt and αtqt; (ii) qt; and (iii) the historical average forecast. As

a benchmark, we also consider a fourth investment strategy, the buy-and-hold strategy of passively

holding the market portfolio. To compute the conditional variance in the optimal portfolio weight,

we use q2t , the conditional market variance from the GARCH(1,1) model in Section 2.6. Table 9

summarizes the investment performance with strategies ranked by their realized Sharpe ratio.

As shown in the Table 9, the investment strategy based on qt and αtqt is the only one to earn

significant abnormal returns relative to the Fama-French six factor and the q five factor models.

Neither the investment strategy based on market volatility, qt, alone, or the strategy based on the

historical average outperforms the passive buy-and-hold strategy in terms of the portfolio Sharpe

ratio or certainty equivalent return. The strategy that combines αt with qt generates a Sharpe

ratio that is 39% higher than that of the passive buy-and-hold strategy (0.78 versus 0.56) and a

CER that is roughly double that of the buy-and-hold strategy. One might view the ratio of the

strategy’s Sharpe ratio to the market Sharpe ratio or the difference between the strategy’s CER

and the market CER as a measure of the value of the information contained in αt.
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Table 9. Out-of-Sample Investment Performance

Predictors w̄ Ret Vol SR CER αFF6 αq5

q, αq 1.31 1.46 6.51 0.78 13.17 7.06∗∗ 7.96∗∗

Buy-and-hold 1.00 0.76 4.69 0.56 6.68 0.00 0.00
q 1.51 0.87 6.71 0.45 5.16 -2.14 -0.12
Historical avg. 1.42 0.71 6.14 0.40 4.07 -2.26 -1.31

Notes: The table displays the out-of-sample performance of investment strategies that update the weights on the

market portfolio based on forecasts of the equity premium at the one month forecast horizon. The weight on the

market portfolio in each period is the one-month-ahead equity premium forecast divided by the product of the

coefficient of relative risk aversion (λ) and the conditional market variance (q2t ). We set λ = 2 as suggested by

Jondeau et al. (2019). The investment strategies correspond to forecasts based on (i) qt, and the product αtqt; (ii)

qt; (iii) the historical average forecast; and (iv) the passive strategy that buys and holds the market portfolio. The

table displays the average weight on the market portfolio (w̄), the average monthly return (Ret), the average monthly

volatility (Vol) of the portfolio return, the annualized monthly Sharpe ratio (SR), the annualized certainty equivalent

return for a mean-variance investor with λ = 2 (CER), and the annualized risk-adjusted returns relative to the Fama

and French (2018) six factor model (αFF6), and the Hou et al. (2021) five-factor q-factor model (αq5). Returns are

in percent. The data spans the out-of-sample period from 2006:07, through 2022:12. ∗∗ denotes the 5% level of

statistical significance.

6 Robustness Checks and Extensions

We perform various analyses to evaluate the robustness of our results: (i) We test if the re-

gression coefficients are stable across the two halves of the sample period. (ii) We test whether αt

restores the risk-return tradeoff in both halves of the sample period. (iii) We test if the results hold

using alternative GARCH volatility models. (iv) We test if αt has predictive power in the absence

of market volatility and assess its predictive power over time. (v) We conduct additional tests to

evaluate if the predictive power of qt and αtqt holds at the longer six-month and twelve-month

horizons. (vi) We test the performance of the log-linearized version of Equation (11) in which the

log equity premium is approximately a linear function of qt, αt, and γt. (vii) We test if the results

for market crashes and NBER recessions hold for the out-of-sample period. (viii) We construct α

using the equity approximation with risk aversion, using CRRA parameters λ = 1 (log utility) and

λ = 2, and test whether the resulting α series restores the risk-return tradeoff in-sample and out-

of-sample. Our results are robust in each case. This section presents the parameter stability tests

and the predictive regressions for each sub-sample. The remaining robustness checks are presented

in Internet Appendix C.
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6.1 Stability of Regression Coefficients

Motivated by Welch and Goyal (2008), we investigate if the regression coefficients are stable

across the two halves of our sample. Table 10 displays the in-sample regression coefficients across

the two halves of the sample period. Table 10 reveals that the regression with only qt is unstable, as

it changes sign from negative to positive. In contrast, the estimated coefficients for qt are noticeably

more stable when the interaction term αtqt is included in the regression. Further, the coefficients

for αtqt are similar and not significantly different across the two halves of the sample period. For

example, at the quarterly horizon, the coefficient estimates on market volatility are -0.58 and 1.51

in the two halves of the sample when only qt is included. Including the interaction term αtqt in

the regression yields estimated coefficients for qt of 4.29 and 4.15 in the two halves of the sample

and they are not significantly different. The coefficients for αtqt are -4.01 and -4.43 across the two

halves of the sample and are also not significantly different. These observations further suggest αt

is a missing state variable that helps produce more stable forecasts of the risk-return tradeoff.

Table 10. Stability of Coefficients for the Risk-Return Tradeoff

Monthly Quarterly

xt zt β1 β2 β1 β2

qt -0.03 0.43 -0.58 1.51
qt αtqt 1.78 1.43 4.29 4.15
αtqt qt -1.35 -1.69 -4.01 -4.43

Notes: The table displays coefficients from full-sample predictability regressions for the first and second half of

the sample period for the monthly and quarterly forecast horizons. The first sub-sample spans monthly data from

1990:01 - 2006:06. The second sub-sample spans from 2006:07 - 2022:12. β1 and β2 denote the estimated coefficients

for the first and second halves of the sample. They are estimated from the regression re[t+1,t+h] = a+ β xt + βD D +

βDx Dxt + βzzt + ϵ[t+1,t+h] where D is a dummy variable that equals 0 in the first half of the sample period and

1 in the second half of the sample, h ∈ {1, 3}, β1 := β and β2 := β + βDx. The predictor variables include market

ambiguity attitude, αt, conditional market volatility, qt, measured from a GARCH(1,1) model, and the product αtqt.

For ease of interpreting the coefficients, qt and αtqt are divided by their (full sample) standard deviation.

6.2 Performance Across Subsamples

Table 11 (columns (6) and (9) in both Panels A and B) shows that αt restores the risk-return

tradeoff for both halves of the sample period at both the monthly and quarterly horizons. In
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each case, the significantly positive risk-return relation is recovered when αtqt is included in the

regression with qt. Further, including both qt and αtqt more than triples the R2, relative to just

including qt for each of regressions (3), (6), and (9) at both the monthly and quarterly horizons.

Table 11. Market Ambiguity Attitude and the Risk-Return Tradeoff Across Subsamples

Monthly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1

qt 0.30 1.35∗∗∗ 0.43 1.51∗∗∗ -0.02 1.56∗∗

(1.18) (5.44) (1.38) (5.45) (-0.04) (2.29)

αtqt -0.32 -1.36∗∗∗ -0.28 -1.69∗∗ -0.35 -1.37∗∗

(-1.07) (-3.87) (-0.55) (-2.59) (-1.02) (-2.35)

R2 0.005 0.005 0.042 0.011 0.003 0.061 0.000 0.007 0.027

Quarterly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel B re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3]

qt 0.92 3.89∗∗∗ 1.50∗∗ 4.40∗∗∗ -0.51 3.65∗∗

(1.38) (5.63) (2.02) (5.78) (-0.40) (2.28)

αtqt -0.88 -3.86∗∗∗ -0.49 -4.58∗∗∗ -1.22 -3.60∗∗

(-1.13) (-4.07) (-0.39) (-2.90) (-1.25) (-2.42)

R2 0.014 0.012 0.112 0.046 0.003 0.165 0.003 0.028 0.062

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, re[t+1,t+h], in percent, against the conditional stock
market volatility (qt), estimated from a GARCH(1,1) model (from Section 2.6), in regression specifications (1), (4),
and (7); regressions of the log equity premium against the product of market ambiguity attitude and the conditional
market volatility (αtqt) in regression specifications (2), (5), and (8); and regressions of the log equity premium against
both variables in regression specifications (3), (6), and (9). Formally, we run versions of the following regression that
include one or both of the right-hand-side variables:

re[t+1,t+h] = β0 + β1qt + β2αtqt + ϵ[t+1,t+h]. (22)

Regressions (1), (2), and (3) span monthly data from the full sample period (1990:01 - 2022:12). Regressions (4), (5),

and (6) use data from the second half of this sample (2006:07 - 2022:12) which is the period for which qt and αt are

recursively estimated using only information available to investors in real time. Regressions (7), (8), and (9) use data

from the first half of the sample period (1990:01 - 2006:06) which served as the training period in which qt and αt

were estimated using all data in the first half of the sample. Regressions are over a forecast horizon of h = 1 month

(monthly horizon) in Panel A and over a forecast horizon of h = 3 months (quarterly horizon) in Panel B.
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7 Conclusion

This paper studies the effect of market ambiguity attitude on the risk-return tradeoff. We

consider a representative agent asset pricing model in which equilibrium prices depend on an in-

formation component (reflecting the asset’s discounted expected value) and an ambiguity attitude

component. The equilibrium equity premium depends on market optimism, Knightian uncertainty,

positive skewness, and disaster risk, linking these strands of the asset pricing literature. Our

model yields the theoretical implication that the equity premium is increasing in market volatility

and the slope of this relationship flattens as market ambiguity attitude increases. We develop a

theory-based measure of the market’s ambiguity attitude and test the theoretical implication that

it predicts time variation in the market risk-return tradeoff. We also test if market ambiguity

attitude predicts market crashes and recessions.

Our paper adds to the literature on applications of ambiguity models to finance and to the

literature on time-variation in the equity premium (Campbell and Cochrane, 1999; Cohn et al.,

2015) by identifying a new source of time-varying expected returns which we have shown has

distinct predictive power from market sentiment, ambiguity, skewness, disaster risk, disagreement,

time-varying risk aversion, and 25 standard variables used to predict the equity premium.

We find that the predicted positive relationship between the equity premium and the conditional

market volatility is observed only after accounting for the market ambiguity attitude. This finding

holds both in-sample and out-of-sample, at both the monthly and quarterly forecast horizons, and

it is not subsumed by market sentiment or established equity premium predictors. Our paper

documents that market ambiguity attitude predicts market crashes, consistent with high levels

of optimism reflecting an over-valued market relative to an expected utility representative agent.

Further, market ambiguity attitude predicts NBER recessions, indicating that market ambiguity

attitude provides a link between stock market and business cycle fluctuations. The information

in market ambiguity attitude substantially increases the Sharpe ratio and certainty equivalent

return of a mean-variance investor relative to using only market volatility as a predictive signal,

or to adopting a buy-and-hold strategy. Our results indicate that market ambiguity attitude is an

important state variable in driving time-varying expected returns, and might help to bridge the

gap between irrational exuberance in the stock market and equilibrium asset pricing theory.
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Appendix

Proof of Proposition 1: The equity premium from Equation (8) is the following

EPt = −Covt(Mt+1, Rt+1)

EtMt+1
+

γt
1− γt

(
αt

M t+1

EtMt+1
(Rf,t −Rt+1) + (1− αt)

M t+1

EtMt+1
(Rf,t −Rt+1)

)
,

where EPt := Rt+1 −Rf,t, and Mt+1 := δ u′(Ct+1)
u′(Ct)

. Recall that M t+1 and M t+1 are associated with

the next period’s optimistic and pessimistic consumption growth rates. Given the CRRA utility

function, Mt+1 = δ
(
Ct+1

Ct

)−λ
= e−ρ−λ∆ct+1 , where ρ := − ln δ. The normality of log consumption

growth ∆ct+1 in (9) implies EtMt+1 = e−ρ−λg+ 1
2
λ2σ2

.17 From Assumption 1, we have M t+1 =

e−ρ−λg−λξσ, and M t+1 = e−ρ−λg+λξσ. Similarly, from the normality of log returns and Assumption

1, we have Rt+1 = eµt+ξqt , and Rt+1 = eµt−ξqt . Finally, the covariance term in the EPt equation is

the following

Covt(Mt+1, Rt+1) = EtMt+1Rt+1 − EtMt+1EtRt+1 = e−ρ−λg+ 1
2λ

2σ2+µt+
1
2 q

2
t
(
e−λησqt − 1

)
.

Substituting EtMt+1, M t+1, M t+1, Rt+1, Rt+1, and the covariance term, we have

EPt = eµt+
1
2 q

2
t
(
1− e−ηλσqt

)
+

γtαt

1− γt

(
e−λξσ− 1

2λ
2σ2
(
Rf,t − eµt+ξqt

)
+ (1− αt)e

λξσ− 1
2λ

2σ2 (
Rf,t − eµt−ξqt

))
. (23)

We use the approximation ex ≈ 1 + x, which is accurate for small values of x. Note that since

EtRt+1 ≈ 1 + µt +
1
2q

2
t , we have 1 + µt −Rf,t ≈ EPt − 1

2q
2
t . Thus, we can rewrite the above as

EPt ≈ ηλσqt

(
1 + µt +

1

2
q2t

)
−

γt
1− γt

(
αt

(
1− λξσ − 1

2
λ2σ2

)(
EPt + ξqt −

1

2
q2t

)
+ (1− αt)

(
1 + λξσ − 1

2
λ2σ2

)(
EPt − ξqt −

1

2
q2t

))
.

(24)

The covariance term is the expected market return, multiplied by λησqt; however, using the stan-

dard monthly calibration σ = 0.016/
√
12, q = 0.16/

√
12, η = 0.2, and with log utility λ = 1 as the

baseline, this term contributes about five basis points annually to the equity premium, which is

negligible. Moreover, in comparison to the first-order terms, the second-order terms 1
2q

2
t and 1

2λ
2σ2

are negligible, which we drop. Next, we use 1
1+x ≈ 1 − x, which is accurate for small values of x,

17Recall that if x ∼ N (µ, σ2), then E ex = eµ+ 1
2
σ2

.
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and replace ξ and ξ with ξ, to find

EPt ≈
(
1− 2αt + λσξ

(
1− (1− 2αt)

2γt
))

ξγtqt.

Finally, note that the term (1− 2αt)
2γt is, on average, about 0.01 (since the mean values of αt and

γt are about 27% and 5.0%, respectively), and hence, the term −λσξ(1−2αt)
2γt in the parenthesis

is negligible. Thus, we find the approximation

EPt ≈
(
1− 2αt + λσξ

)
ξγtqt. (25)

A brief discussion about the accuracy of the EPt approximation formula (25) is in order. We

show that solving EPt directly from (24) gives numerically an almost identical value to the approx-

imation. We use the log utility parameter λ = 1 as our baseline. First, using the (monthly) average

values, i.e., σ = 0.016/
√
12, q = 0.16/

√
12, η = 0.2, rf = 0.01/12, α = 0.27, and γ = 0.050, and

the parameter ξ = 4.77, the EP values from (24) and (25) are 0.00535 and 0.00531, respectively.

Second, using our estimated series of αt and γt, and the monthly data series for qt, and rf,t, and the

parameter values σ = 0.016/
√
12, η = 0.2, and ξ = 4.77, the correlation between the time variable

EPt from (24) and (25) is 0.999. They are graphed in Figure 3 in Internet Appendix B. When

plotting the two series together, the difference is hardly visible.

Proof of Proposition 2: We start with the definition VRP t := VarQt Rt+1 − VartRt+1. Note

that the conditional log normality of returns implies that σt(Rt+1) = EtRt+1

√
eq

2
t − 1 ≈ (1 + µt +

1
2q

2
t )qt ≈ qt. That is, the log returns’ and returns’ conditional variance are approximately the same.

Next, using the fact that under the risk-neutral measure, the expected market return equals the

risk-free rate, we have

VRP t = (1− γt)EtRf,tMt+1(Rt+1 −Rf,t)
2+

γt

(
αtRf,tM t+1(Rt+1 −Rf,t)

2 + (1− αt)Rf,tM t+1(Rt+1 −Rf,t)
2
)
− q2t . (26)

Similar to the EPt approximation, the contribution of the covariance term (betweenMt+1 and R2
t+1)

is negligible. This implies that EtRf,tMt+1(Rt+1−Rf,t)
2 ≈ q2t , which is not surprising, as it is well-

known that the CRRA utility creates no variance risk premium. Further, Rf,tM t+1 ≈ 1−λξσ, and
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Rf,tM t+1 ≈ 1 + λξσ. Thus, we have

VRP t ≈ γtαt

(
1− λξσ

) (
EPt + ξqt

)2
+ γt(1− αt)

(
1 + λξσ

) (
EPt − ξqt

)2 − γtq
2
t+1.

Replacing EPt ≈
(
1−2αt+λσξ

)
ξγtqt from the EPt approximation and using ξ = ξ, after collecting

terms, the previous expression becomes

VRP t ≈
[
1− (2γt − γ2

t )(1− 2αt)
2 + (1− 2αt)

(
1− 2γt + (1− 2αt)

2γ2
t

)
ξλσ

]
ξ2q2t γt − γtq

2
t . (27)

The term inside the bracket is approximately one. For instance, with the log utility (λ = 1) as the

baseline, and using the average (monthly) values σ = 0.016/
√
12, α = 0.27, γ = 0.050, and the

parameter ξ = 4.77, the two terms after one in the bracket are about -0.02 and 0.01 respectively,

which makes their sum negligible compared to one. Thus, we find that

VRP t ≈ (ξ2 − 1)q2t γt. (28)

We present a brief demonstration of how accurately the VRP t in (28) approximates (27). We

use log utility (λ = 1) as the baseline. First, we compare the righ-hand sides of (27) and (28) at the

average (monthly) values σ = 0.016/
√
12, q = 0.16/

√
12, α = 0.27, γ = 0.050, and the parameter

ξ = 4.77, to find the (monthly) VRP values of 0.00229 and 0.00232, respectively. Second, we

look at the correlation between the right-hand sides of (27) and (28) using the (monthly) value

of σ = 0.016/
√
12 and data series qt, together with our estimated time series of αt and γt with

parameter ξ = 4.77. The correlation between the two VRP t series is 0.999. They are graphed in

Figure 4 in Internet Appendix B. We conclude that the approximation is quite accurate.
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Internet Appendix

Appendix A Data Appendix

This appendix contains the sources of data used in the paper.

1. Market Excess Return: The market excess return (Rm-Rf), market return (Rm), and

risk-free rate (Rf) are from Kenneth French’s data library: https://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html.

2. Baker-Wurgler Sentiment Index (BW): The Baker andWurgler (2006) market sentiment

index (bw) is from Jeffrey Wurgler’s website: https://pages.stern.nyu.edu/~jwurgler/.

3. Barro-Liao U.S. Disaster Probabilities: The Barro and Liao (2021) U.S. disaster proba-

bility data series is available from Gordon Liao’s website at: https://gliao.xyz/research/.

4. Cederburg, Johnson, & O’Doherty Equity Premium Predictors: The eleven predic-

tors used from Cederburg et al. (2023) were shared with us by the authors of that paper.

Their data extends through December, 2017. We were able to have data updated through

2021 for all eleven of the predictors in their paper that have data available at the start of our

sample period (January, 1990). The eleven predictors are: West Texas Intermediate oil price

changes (Driesprong et al., 2008), the variance risk premium (Bollerslev, 1986), the output

gap (Cooper and Priestley, 2009), average correlation (Pollet and Wilson, 2010), nearness to

the DOW all-time high (Li and Yu, 2012), new orders-to-shipments of durable goods (Jones

and Tuzel, 2013), the tail-risk measure of Kelly and Jiang (2014), the PLS book-to-market fac-

tor (Kelly and Pruitt, 2013), short interest (Rapach et al., 2016), employment growth (Chen

and Zhang, 2011), and the gold-to-platinum ratio (Huang and Kilic, 2019). Data extended

through 2021 for the out-of-sample short interest index is available from Guofu Zhou’s web-

site at http://apps.olin.wustl.edu/faculty/zhou/zpublications.html. Data extended

through 2021 for eight other predictors (West Texas Intermediate oil price changes, the vari-

ance risk premium, the output gap, average correlation, nearness to the DOW-all time high,

new orders-to-shipments of durable goods, the tail-risk measure of Kelly and Jiang (2014),

and the PLS book-to-market factor) were provided to us by Amit Goyal. The remaining two

1
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series (employment growth and the gold-to-platinum ratio) were extended through 2021 in

Azimi et al. (2023) using publicly available data according to the procedures described in the

original papers (Chen and Zhang, 2011; Huang and Kilic, 2019).

5. Goyal-Welch Equity Premium Predictors: The 14 Goyal-Welch equity premium pre-

dictors at the monthly frequency are available from Amit Goyal’s website: https://sites.

google.com/view/agoyal145. The 14 equity premium predictors from Welch and Goyal

(2008) that are available at the monthly frequency are the dividend price ratio (dp), the div-

idend yield (dy), the earnings price ratio (ep), the dividend payout ratio (de), realized stock

market variance (svar), book-to-market ratio (bm), net equity expansion (ntis), treasury bill

yield (tbl), long-term yield (lty), long-term treasury bond return (ltr), the term spread (tms),

the corporate bond default yield spread (dfy), default return spread (dfr), and the consumer

price index (infl).

6. Ambiguity Index: The ambiguity index from Brenner and Izhakian (2018) was provided

to us directly by Yehuda Izhakian.

7. PLS Disagreement Index: The PLS disagreement index from Huang et al. (2021) is

available on Dashan Huang’s website at: https://dashanhuang.weebly.com/.

8. Analyst Disagreement Index: The analyst disagreement index from Yu (2011) was pro-

vided to us by Amit Goyal.

9. Risk Aversion Index: The time-varying risk aversion from Bekaert et al. (2022) is available

from Nancy Xu’s website at: https://www.nancyxu.net/risk-aversion-index.

10. Short Interest Index: The short interest index from Rapach et al. (2016) was provided to

us directly by Guofu Zhou.

11. NBER Recession Indicator: The NBER recession indicator is from the St. Louis Federal

Reserve Website (FRED), series USREC and is available at: https://fred.stlouisfed.

org/series/USREC.

12. Price Dividend Ratio (pd): The price-dividend ratio (pd) of the S&P 500 index is computed

as S&P composite price, P, divided by dividend D from Robert Shiller’s website: http:

2

https://sites.google.com/view/agoyal145
https://sites.google.com/view/agoyal145
https://dashanhuang.weebly.com/
https://www.nancyxu.net/risk-aversion-index
https://fred.stlouisfed.org/series/USREC
https://fred.stlouisfed.org/series/USREC
http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm


//www.econ.yale.edu/~shiller/data.htm.

13. VIX and RNS: The monthly VIX index and the marker Risk Neutral Skewness (RNS)

are from the Chicago Board of Options Exchange (CBOE). Both are converted from daily

to monthly series using the last index value for each month as the monthly value for that

month. The daily VIX data is available at https://www.cboe.com/tradable_products/

vix/vix_historical_data/. The daily SKEW index is available at https://www.cboe.

com/us/indices/dashboard/skew/. RNS = E[(R−µ
σ )3], where R is the 30-day log-return on

the S&P 500, µ and σ are respectively the mean and standard deviation of R, x := (R−µ
σ )3 and

RNS = E[x]. RNS is constructed from the SKEW index of the CBOE according to the relation:

RNS = (100 - SKEW)/10. See the CBOE white paper on the SKEW index, page 5, at:

https://cdn.cboe.com/resources/indices/documents/SKEWwhitepaperjan2011.pdf).

3
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Appendix B Supplementary Tables and Figures

Table 12. GARCH(1,1) specifications of market return for up to 3 lags of the pd ratio.

Full Sample (1990 - 2022) Training Sample Period

(1) (2) (3) (4) (5) (6)

pdt−1 -0.037∗∗ -0.033∗∗

(0.015) (0.017)
pdt−2 -0.037∗∗ -0.032∗

(0.015) (0.017)
pdt−3 -0.036∗∗ -0.033∗

(0.015) (0.017)

Constant 2.838∗∗∗ 2.812∗∗∗ 2.744∗∗∗ 2.504∗∗∗ 2.45∗∗∗ 2.497∗∗∗

(0.827) (0.834) (0.831) (0.916) (0.930) (0.935)

ARCH

ARCHt−1 0.192∗∗∗ 0.192∗∗∗ 0.195∗∗∗ 0.110 0.112 0.113
(0.044) (0.044) (0.045) (0.081) (0.082) (0.083)

GARCHt−1 0.774∗∗∗ 0.774∗∗∗ 0.771∗∗∗ 0.864∗∗∗ 0.862∗∗∗ 0.860∗∗∗

(0.052) (0.052) (0.050) (0.092) (0.092) (0.093)

Constant 0.985∗∗ 0.979∗∗ 0.998∗∗ 0.442 0.442 0.448
(0.476) (0.471) (0.477) (0.506) (0.502) (0.499)

N 395 394 393 197 196 195
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The table displays the statistics for the GARCH(1,1) model from Section 2.6 of the main text for the training period

(1990:01 - 2006:06) and the for the full-sample period (1990:01 - 2022:12)). As highlighted in the main text, the

GARCH model is recursively estimated each period after the training period to be free from look-ahead bias for the

second half of the sample period (the period from July, 2006, through December, 2022). The full sample and training

sample results shown here provide a snapshot of the performance of the GARCH model at two points in time and

demonstrate that the estimated coefficients are relatively stable. pd is the price-dividend ratio on the S&P 500 index

from Robert Shiller’s website. Returns are in percent. Standard errors are in parentheses.
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Figure 3. Equity Premium (Approximation versus Exact)

0
.0

1
.0

2
.0

3
.0

4

1990m1 2000m1 2010m1 2020m1
Date

Exact Approximation

Equity Premium (Approximation versus Exact)

Notes: The figure displays the exact equity premium in the NEO-EU model calculated according to Equation 23:

EtRt+1 −Rf,t = eµt+
1
2
q2t

(
1− e−ηλσqt

)
+

γtαt

1− γt

(
e−λξσ− 1

2
λ2σ2

(
Rf,t − eµt+ξqt

)
+ (1− αt)e

λξσ− 1
2
λ2σ2

(
Rf,t − eµt−ξqt

))
,

and the approximation to the equity premium calculated according to Equation 10:

EtRt+1 −Rf,t ≈
(
1− 2αt + λσξ

)
ξγtqt.

Both equations use coefficient of relative risk aversion λ = 1 (log utility). The exact equity premium is shown in dark

blue. The approximation is shown in light blue. The correlation between the two series is 0.999.
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Figure 4. Variance Risk Premium (Approximation versus Exact)
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Notes: The figure displays the exact variance risk premium in the NEO-EU model according to Equation 26:

VRP t = (1− γt)EtRf,tMt+1(Rt+1 −Rf,t)
2 + γt

(
αtRf,tM t+1(Rt+1 −Rf,t)

2 + (1− αt)Rf,tM t+1(Rt+1 −Rf,t)
2
)
− q2t ,

and the approximation to the variance risk premium calculated according to Equation 12:

VRP t ≈ γtq
2
t (ξ

2 − 1).

The exact variance risk premium is shown in dark blue. The approximation is shown in light blue. The correlation

between the two series is 0.999.
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Appendix C Robustness Appendix

This appendix contains the results of our robustness tests. Section C.1 conducts the stability

tests, subsample tests, and additional out-of-sample tests using alternative GARCH volatility mod-

els to study the risk-return tradeoff. Section C.2 tests the ability of α to predict returns by itself.

Section C.3 tests the risk-return tradeoff over the longer six-month and twelve-month horizons.

Section C.4 tests the log-linearized version of Equation (11) from the main text. Section C.5 tests

if our results for predicting crashes and recessions holds for the out-of-sample period. Section C.6

tests the risk-return tradeoff in-sample and out-of-sample for the α series constructed from the

equity premium approximation in Section 2 with risk aversion, using CRRA parameter λ = 1 (log

utility). The results with λ = 2 (the level of risk aversion used in the investment application) are

very similar.

C.1 Alternative GARCH Volatility Models

We test if the risk-return tradeoff results also hold if qt is constructed as a standard simple

GARCH(1,1) model (without including the price-dividend ratio) or as a GJR GARCH model. As

with our main specification (the GARCH(1,1) model from Section 2.6), both the simple GARCH(1,1)

model and the GJR GARCH model are recursively estimated and are free from look-ahead bias.

Table 14 shows the risk-return tradeoff results for the case where qt is a standard simple

GARCH(1,1) model (similar to that in Section 2.6 but constructed with a constant mean instead

of a time-varying mean based on the price-dividend ratio). The table shows the results for both

monthly and quarterly forecast horizons and for the full sample and each subsample.

The results for the standard simple GARCH model are similar to our baseline results: By

itself, qt does not predict the equity premium, but including both qt and αtqt yields a positive and

significant coefficient on qt and a negative and significant coefficient on αtqt at both the monthly

and quarterly forecast horizon. At the monthly horizon, the R2 jumps from 0.4% with only qt to

4% with both qt and αtqt. At the quarterly horizon, the R2 jumps from 1.1% with only qt to 10.3%

with both qt and αtqt. These results for the full sample are stronger for the out-of-sample period.

For the training period, the coefficients for both the monthly and quarterly horizon forecasts are

also significant at the 10% level for qt and at the 5% level for αtqt.
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Table 13 reveals that the coefficient estimates under the simple GARCH model are similar

across the two halves of the sample period when both qt and αtqt are included in the regression.

For example, for qt, the estimated coefficient is 1.64 for the first half and 1.41 for the second half

at the monthly horizon. For αtqt, the estimated coefficient is -1.34 for the first half and -1.67 for

the second half of the sample at the monthly horizon. In contrast, including qt by itself in the

regression produces unstable estimates that change from negative to positive across the two halves

of the sample at both the monthly and quarterly horizons.

Figure 5 displays the predictive performance over time (the plots of the difference in cumulative

sum of squared errors, ∆CSSE) for out-of-sample regressions with qt (left panel) and both qt and

αtqt (right panel) for the one-month forecast horizon where qt is the simple GARCH volatility.

While by itself, qt under-performs the benchmark, the forecast with both qt and αtqt consistently

outperforms the benchmark with a ∆CSSE above 1% that increases across the out-of-sample

period and is close to 2% by the end of the sample period.

In addition to the simple GARCH(1,1) model, we apply a GJR GARCH model. The results

for the GJR GARCH model are similar to those for the simple GARCH model. Figure 6 shows

the out-of-sample performance of the GJR GARCH model over time which is similar to that of the

simple GARCH model shown in Figure 5.

Table 13. Stability of Coefficients in Predictive Regressions (Simple Model)

Monthly Quarterly

xt zt β1 β2 β1 β2

qt -0.05 0.43 -0.67 1.51
qt αtqt 1.64 1.41 3.86 4.09
αtqt qt -1.34 -1.67 -4.00 -4.34

Notes: The table displays coefficients from full-sample predictability regressions for the first and second half of the

sample period for the monthly and quarterly forecast horizons. The first sub-sample spans monthly data from 1990:01

- 2006:06. The second sub-sample spans from 2006:07 - 2022:12. β1 and β2 denote the estimated coefficients for the

first and second halves of the sample. They are estimated from the regression re[t+1,t+h] = a+β xt+βD D+βDx Dxt+

βzzt + ϵ[t+1,t+h] where D is a dummy variable that equals 0 in the first half of the sample period and 1 in the second

half of the sample, h ∈ {1, 3}, β1 := β and β2 := β+βDx. The predictor variables include market ambiguity attitude,

αt, conditional market volatility, qt, measured from a simple GARCH(1,1) model, and the product αtqt. For ease of

interpreting the coefficients, qt and αtqt are divided by their (full sample) standard deviation.
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Table 14. Market Ambiguity Attitude and the Risk-Return Tradeoff (Simple GARCH Volatility)

Monthly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1

qt 0.28 1.34∗∗∗ 0.42 1.53∗∗∗ -0.04 1.34∗

(1.09) (5.26) (1.35) (5.22) (-0.09) (1.93)

αtqt -0.32 -1.36∗∗∗ -0.28 -1.71∗∗ -0.35 -1.24∗∗

(-1.07) (-3.73) (-0.55) (-2.59) (-1.01) (-2.06)

R2 0.004 0.005 0.040 0.011 0.003 0.060 0.000 0.007 0.023

Quarterly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel B re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3]

qt 0.85 3.83∗∗∗ 1.50∗∗ 4.48∗∗∗ -0.61 2.97∗

(1.24) (5.59) (1.99) (5.69) (-0.50) (1.81)

αtqt -0.90 -3.86∗∗∗ -0.50 -4.67∗∗∗ -1.23 -3.21∗∗

(-1.15) (-3.95) (-0.39) (-2.89) (-1.28) (-2.09)

R2 0.011 0.010 0.103 0.044 0.003 0.164 0.004 0.029 0.054

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, re[t+1,t+h], in percent, against the conditional stock
market volatility (qt), estimated from a standard simple GARCH(1,1) model, in regression specifications (1), (4),
and (7); regressions of the log equity premium against the product of market ambiguity attitude and the conditional
market volatility (αtqt) in regression specifications (2), (5), and (8); and regressions of the log equity premium against
both variables in regression specifications (3), (6), and (9). Formally, we run versions of the following regression that
include one or both of the right-hand-side variables:

re[t+1,t+h] = β0 + β1qt + β2αtqt + ϵ[t+1,t+h]. (29)

Regressions (1), (2), and (3) span monthly data from the full sample period (1990:01 - 2022:12). Regressions (4),

(5), and (6) use data from the second half of this sample (2006:07 - 2022:12) which is the period for which qt and αt

are recursively estimated using only information available to investors in real time. Regressions (7), (8), and (9) use

data from the first half of the sample period (1990:01 - 2006:06) which served as the training period in which qt and

αt were estimated using all data in the first half of the sample. Regressions in Panel A are over a forecast horizon

of h = 1 month (monthly horizon). Regressions in Panel B are over a forecast horizon of h = 3 months (quarterly

horizon) and the dependent variable is the cumulative three-month log equity premium. For ease of interpreting the

coefficients, q and αq are divided by their (full sample) standard deviation.
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Figure 5. The Risk-Return Tradeoff Out-of-Sample with α and Simple GARCH Volatility
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forecast of the one-month-ahead log equity premium based on the historical average and the forecast based on

the conditional market volatility from a standard simple GARCH(1,1) model in the left panel. The right panel

displays the ∆CSSEOOS between the forecast based on the historical average and the forecast based on the pair of

predictors consisting of the conditional market volatility and the product of the conditional market volatility and the

conditional market ambiguity attitude. The out-of-sample period spans from 2006:07 - 2022:12. Shaded periods are

NBER recessions.

Figure 6. The Risk-Return Tradeoff Out-of-Sample with α and GJR GARCH Volatility
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of the one-month-ahead log equity premium based on the historical average and the forecast based on the conditional

market volatility from a standard GJR GARCH model in the left panel. The right panel displays the ∆CSSEOOS

between the forecast based on the historical average and the forecast based on the pair of predictors consisting of

the conditional market volatility and the product of the conditional market volatility and the conditional market

ambiguity attitude. The out-of-sample period spans from 2006:07 - 2022:12. Shaded periods are NBER recessions.
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Table 15 displays the R2
OS statistic for out-of-sample forecasts using the simple GARCH volatil-

ity model (top panel) and using the GJR GARCH volatility model (bottom panel) for the monthly,

quarterly, six-month, and annual forecast horizons. Results are similar to the out-of-sample results

shown in the main text.

Table 15. R2
OS (percent) for Log Equity Premium Forecasts

Simple GARCH Monthly Horizon Quarterly Horizon Six-Month Horizon Annual Horizon

Predictors R2
OS CW R2

OS CW R2
OS CW R2

OS CW

qt -0.16 -0.50 -1.77 -1.21 -2.91 -2.38∗∗ -7.73 -3.84∗∗∗

qt, αtqt 4.21 2.63∗∗∗ 12.77 4.26∗∗∗ 19.09 4.41∗∗∗ 14.44 4.71∗∗∗

GJR GARCH Monthly Horizon Quarterly Horizon Six-Month Horizon Annual Horizon

Predictors R2
OS CW R2

OS CW R2
OS CW R2

OS CW

qt -0.73 -0.71 -3.98 -1.54 -4.46 -2.57∗∗ -9.61 -3.83∗∗∗

qt, αtqt 3.83 2.63∗∗∗ 10.66 4.08∗∗∗ 18.67 4.05∗∗∗ 14.61 4.15∗∗∗

Notes: The Table displays the Campbell and Thompson (2008) R2
OS statistic (in percent) for predictor variables

at the monthly, quarterly, six-month, and annual (twelve-month) forecast horizons of the log equity premium. The

dependent variable is, respectively, the one-month, cumulative three-month, cumulative six-month, and cumulative

twelve-month log equity premium. The sets of predictors are market volatility (qt), and market volatility and the

product of volatility and ambiguity attitude (qt, αtqt). The top panel shows the results for which volatility q is

generated by a simple GARCH(1,1) model. The bottom panel shows the results for which q is generated by a GJR

GARCH model. CW is the Clark and West (2007) MSPE-adjusted statistic. ∗∗, and ∗∗∗ denotes significance at the

5%, and 1% levels. The out-of-sample period spans the second half of our sample, 2006:07 - 2022:12.

C.2 Market Ambiguity Attitude without Market Volatility

Table 16 reports predictive regressions with αt as the predictor variable at the monthly and

quarterly forecast horizons. The table shows that αt itself has predictive power at both horizons,

with an adjusted R2 of 1.6% at the monthly horizon and 4.6% at the quarterly horizon. Figure 7

shows the out-of-sample prediction performance of market volatility, q, market ambiguity attitude,

α, the combination of q and αq, and for comparison, short interest, which is among the strongest

known predictors of aggregate stock returns (Rapach et al., 2016). Each of the forecasts except for

q show evidence of positive predictability. Only the bivariate forecast of q and αq consistently has

a difference in the cumulative sum of squared errors around 1.5% and displays an upward slope.
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Table 16. Predictive Regressions with α

Monthly Quarterly

(1) (2)
ret+1 re[t+1,t+3]

αt -0.57∗∗ αt -1.67∗∗∗

(-2.16) (-2.33)

adj. R2 0.016 0.046

∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, re[t+1,t+h], (in percent) against market ambiguity

attitude, αt. In the regression specifications in columns (1) and (2), the dependent variable is the one-month and

cumulative three-month log equity premium. For ease of interpreting the coefficients, αt is divided by its (full sample)

standard deviation. The sample period spans monthly data from 1990:01 through 2022:12. Newey-West t statistics

are in parentheses.

Figure 7. Out-of-Sample Equity Premium Prediction
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Notes: This figure displays the difference in cumulative sum of squared errors, ∆CSSEOOS , between the one-month-

ahead forecast of the log equity premium based on the historical average and the one-month-ahead forecast based

on the conditional market volatility, q, the conditional ambiguity attitude, α, the combination of q and αq, and

the leading equity premium predictor, short interest. The out-of-sample period spans the second half of the sample

period, 2006:07 - 2022:12. Shaded periods are NBER recessions.
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C.3 Long-Horizon Regressions

Table 17 conducts predictive regressions with qt and αtqt at the longer six-month and twelve-

month (annual) horizons. The results reinforce the strong complementary predictive power of αtqt

that is documented in the main text. At the six-month horizon, including αtqt in the regression

raises the adjusted R2 dramatically from 2.7% to 17.8%. Similar results hold for the annual horizon.

Table 17. The Risk-Return Tradeoff over Long Horizons

Six-Month Horizon Annual Horizon

(1) (2) (3) (4)
re[t+1,t+6] re[t+1,t+6] re[t+1,t+12] re[t+1,t+12]

qt 1.97∗ 7.27∗∗∗ qt 2.98 11.79∗∗∗

(1.73) (4.81) (1.49) (3.31)

αtqt -6.95∗∗∗ αtqt -11.56∗∗∗

(-3.65) (-2.94)

adj. R2 0.027 0.178 0.030 0.231

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, re[t,t+h], (in percent) against market volatility, qt.

Even-numbered regressions also include αtqt. In the regression specifications in columns (1) and (2), the dependent

variable is the cumulative six-month log equity premium and the predictor variables are lagged by six months (semi-

annual forecast horizon). In the regression specifications in columns (3) and (4), the dependent variable is the

cumulative twelve-month log equity premium and all predictors are lagged twelve months (annual forecast horizon).

For ease of interpreting the coefficients, qt and αtqt are divided by their (full sample) standard deviation. The sample

period spans monthly data from 1990:01 through 2022:12.

13



C.4 Log-linearized Model

Log-linearizing the equity premium formula in Equation (11) yields an approximation of the

log equity premium as a linear function of market volatility, qt, market ambiguity, γt, and market

optimism, αt. Table 18 reports the results of predictive regressions against these lagged state

variables. Consistent with our main results, αt restores the risk-return tradeoff at the monthly,

quarterly, six-month, and annual horizons. The state variable, γt plays less of a role, but the

coefficent for γt is positive and significant at the six-month horizon, and including γt in the regression

at that horizon increases the adjusted R2 by 3.2%.

Table 18. Predictive Regressions with Log-Linearized Model

Monthly Horizon Quarterly Horizon Six-Month Horizon Annual Horizon

(1) (2) (3) (4) (5) (6) (7) (8)
ret+1 ret+1 re[t+1,t+3] re[t+1,t+3] re[t+1,t+6] re[t+1,t+6] re[t+1,t+12] re[t+1,t+12]

αt -0.98∗∗∗ -1.00∗∗∗ -2.87∗∗∗ -3.27∗∗∗ -5.60∗∗∗ -6.31∗∗∗ -9.60∗∗∗ -10.34∗∗∗

(-4.14) (-4.14) (-4.46) (-4.92) (-4.11) (-4.64) (-3.29) (-3.63)

qt 0.80∗∗∗ 0.83∗∗∗ 2.39∗∗∗ 2.81∗∗∗ 4.82∗∗∗ 5.56∗∗∗ 7.83∗∗∗ 8.62∗∗∗

(3.29) (2.63) (4.14) (3.33) (5.76) (5.36) (3.64) (3.90)

γt 0.07 1.23 2.20∗∗ 2.37
(0.19) (1.65) (2.13) (1.49)

adj. R2 0.035 0.033 0.110 0.130 0.208 0.240 0.285 0.302

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, Re
[t,t+h], (in percent) against lagged market ambigu-

ity attitude, αt and market volatility, qt. Even-numbered regressions also include lagged γt. For ease of interpreting

the coefficients, qt, αt, and γt are divided by their (full sample) standard deviation. The sample period spans monthly

data from 1990:01 through 2022:12.
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C.5 Predicting Market Crashes and Recessions in the Out-of-Sample Period

Table 19 tests if our results for market crashes hold for the out-of-sample period during which

αt is free from look-ahead bias. The table reveals that αt predicts both market corrections (10%

crashes) as well as 5% crashes in the out-of-sample period. The predictability holds even controlling

for the variables used in the construction of αt (qt, VIX, and the price-dividend ratio), which

themselves are natural candidates for predicting crashes.

Table 19. Predicting Market Crashes with Market Ambiguity Attitude

Logistic Regressions for Predicting Market Crashes (Out-of-Sample Period)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
-10% -10% -10% -10% -10% -5% -5% -5% -5% -5%

αt−3 1.90∗∗∗ 2.11∗∗ 1.68∗∗∗ 1.85∗∗∗ 2.17∗∗∗ 0.76∗∗∗ 0.81∗∗∗ 0.80∗∗∗ 0.77∗∗∗ 0.86∗∗∗

(3.49) (2.39) (5.25) (4.01) (3.94) (2.94) (3.14) (2.98) (2.86) (3.00)

qt−3 0.54 0.12 -0.14 -0.17
(1.20) (0.31) (-0.73) (-0.83)

VIXt−3 0.35 -0.39 -0.08 -0.03
(0.82) (-0.78) (-0.31) (-0.12)

pdt−3 -1.60∗ -2.21 -0.04 -0.17
(-1.84) (-1.37) (-0.14) (-0.45)

Pseudo R2 0.159 0.214 0.188 0.271 0.284 0.072 0.076 0.073 0.072 0.077

Robust Z statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays the slope coefficients from logistic regressions. The left-hand-side variable equals one in

period t if a market return less than -10% occurred in period t, and zero otherwise. In columns (6) - (10), the left-

hand-side variable equals one in period t if a market return less than -5% occurred in period t, and zero otherwise. The

right-hand-side variables (each lagged three months) are the market ambiguity attitude. α, the conditional market

volatility, q, the VIX index of the Chicago Board of Options Exchange, and the price-dividend ratio, pd, of the S&P

500 index. The results are shown for the out-of-sample period (2006:07 - 2022:12). For convenience in interpreting

the coefficients, each right-hand-side variables is divided by its full-sample standard deviation.

Table 20 summarizes logistic regressions with α as a predictor variable for NBER recessions at

the three-month horizon during the out-of-sample period.18 Recall that we consider the term spread,

TMS, the aggregate stock market return, Rm, and the default yield spread (DFY) as candidate

NBER recession predictors. Each of these variables has significant predictive power for NBER

recessions over our sample period. As additional control variables we include the price dividend

ratio of the S&P 500 index (pd), the VIX index from the CBOE, and q from the GARCH(1,1)

18Similar results are obtained using probit regressions.
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model in Section 2.6. We also include as controls the Baker and Wurgler (2006) market sentiment

index and the lagged NBER recession indicator.

Table 20 shows that α significantly predicts NBER recessions in the out-of-sample period across

each set of control variables. For regression specification (6) with all eight control variables included,

adding α to the regression increases the Pseudo R2 by 14.7 percentage points. The results in this

section further indicate that market ambiguity attitude predicts stock market fluctuations and

business cycle fluctuations.

Table 20. Predicting Recessions with Market Ambiguity Attitude

Logistic Regressions for Predicting Recessions (Out-of-Sample Period)

(1) (2) (3) (4) (5) (6)
REC REC REC REC REC REC

αt−3 2.27∗∗∗ 3.57∗∗∗ 2.10∗∗∗ 3.00∗∗∗ 2.77∗∗∗ 3.25∗∗∗

(3.02) (3.55) (3.14) (4.44) (3.94) (3.26)

Lagged Recession Predictors NO YES NO NO NO YES

Lagged Recession Indicator NO NO YES NO NO YES

Lagged α Ingredients NO NO NO YES NO YES

Lagged Sentiment Index NO NO NO NO YES YES

Pseudo R2 0.290 0.593 0.617 0.612 0.379 0.747
∆(Pseudo R2) 0.290 0.275 0.142 0.311 0.375 0.147

Robust z statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table displays the slope coefficients from logistic regressions. The left-hand-side variable is the NBER

recession indicator (REC) from the St. Louis Federal Reserve database. REC is equal to one in period t if there

was a recession in period t and is equal to zero otherwise. The right-hand-side variables (each lagged three months)

include the market ambiguity attitude (α) and eight control variables: (i) the term spread (TMS) (the difference

between the long-term U.S. government bond yield and the U.S. treasury bill) from Welch and Goyal (2008) (ii) the

default yield spread (DFY) (the difference between BAA and AAA-rated corporate bond yields) from Welch and

Goyal (2008) (iii) the aggregate market return (Rm) from Kenneth French’s data library (The variables TMS, DFY,

and Rm are our ‘recession predictor’ variables as these are known to have forecasting power for NBER recessions);

(iv) the lagged NBER recession indicator; (v) the price-dividend ratio of the S&P 500 index from Robert Shiller’s

website (pd); (vi) the VIX index of the Chicago Board of Options Exchange; (vii) the conditional market volatility,

q, from the GARCH model in Section 2.6 (The variables pd, VIX, and q are the ‘α ingredients’ as these variables

were used in the construction of α); and (viii) the Baker and Wurgler (2006) market sentiment index. The table

displays the results for the out-of-sample period from 2006:07 through 2022:12, except in regression specification (2)

which ends in 2021:12, specification (5) which ends in 2022:06, and specification (6) which ends in 2021:12 due to

data availability. ∆(Pseudo R2) denotes the change in Pseudo R2 from including α in the regression relative to an

otherwise identical regression that excludes α. For convenience in interpreting the coefficients, α is divided by its

full-sample standard deviation.
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C.6 Market Ambiguity Attitude accounting for Risk Aversion

As in the main text, we use the square of the VIX index as a proxy for the risk-neutral variance,

VarQt Rt+1. Then using formula (12) we find γt to be:

γ̂t ≈
1

ξ2 − 1

(VIX2
t

q̂2t
− 1
)
. (30)

Next, we use the relationship, EPt ≈ ξ(1 − 2αt + λσξ)qtγt from Equation (10) to estimate αt.

In line with the intuition that αt has persistent dynamics, we let αt follow a Markov-switching

structure with two states. Note that the relationship implies ξ(1− 2αt + λσξ) ≈ EPt

qtγt
. Thus, if αt

follows a Markov-switching model, so does the ratio
EPt

qtγt
. To estimate αt, we estimate the following

Markov-switching dynamic regression model:

ÊPt

q̂tγ̂t
= µmt + ϵt, (31)

where ϵt is a white noise and µmt switches between two regimes according to a probability matrix.

The quantity
EPt

qtγt
is a measure like a conditional Sharpe ratio but which includes a role for

market ambiguity, γt. In the Markov-Switching model there are two regimes: (i) a bear market

regime with relatively low prices and high expected future returns per unit of risk, and (ii) a bull

market regime with relatively high prices and low expected future returns per unit of risk. Market

optimism, αt, is then increasing in the probability of the bull market regime.

The estimated model gives us a predicted value of µ̂mt using the information up to and including

time t. We then find our estimate of αt according to:

α̂t =
1

2

(
1− µ̂mt

ξ
+ λσξ

)
. (32)

As before both qt and αt are estimated dynamically so that only the information up to period

t is used in the estimation of q̂t and α̂t to avoid look-ahead bias.

For the standard deviation of consumption growth we use the monthly value data value, noted

in the proof of Proposition 1 from the main text, given by σ = 0.016/
√
12 and we use ξ = 4.77 as

before.
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We construct two alternative αt series, denoted αλ,t in which λ = 1 (log utility) and λ = 2 (the

level of risk aversion in our investment application in the main text). The baseline αt series has a

correlation of 0.999 with each of these two new series. The mean value of αt changes slightly from

0.27 (with λ = 0) to 0.28 (with λ = 1) to 0.29 (with λ = 2).

Table 21 reports the R2
OS statistic for predictive regressions at the monthly, quarterly, six-month,

and annual horizons using αt constructed for a representative agent with log utility (λ = 1). Table

22 displays the in-sample predictive regressions for the full sample period and for both sub-samples

using αλ,t with λ = 1. The results are close to those for our baseline αt series in which the

representative agent is risk-neutral (λ = 0). The results for the αt series constructed with λ = 2

are also similar and are omitted.

Table 21. R2
OS for the Risk-Return Tradeoff

Monthly Horizon Quarterly Horizon Six-Month Horizon Annual Horizon

Predictors R2
OS CW R2

OS CW R2
OS CW R2

OS CW

qt, αλ,tqt 3.92 2.53∗∗ 12.52 4.01∗∗∗ 19.00 4.20∗∗∗ 11.00 4.52∗∗∗

Notes: The table displays the Campbell and Thompson (2008) R2
OS statistic (in percent) for predictor variables

at the monthly, quarterly, six-month, and annual (twelve-month) forecast horizons of the log equity premium. The

dependent variable is, respectively, the one-month, cumulative three-month, cumulative six-month, and cumulative

twelve-month log equity premium. The set of predictors is market volatility (qt) and the product of volatility

and ambiguity attitude (qt, αλ,tqt), where αλ,t is measured from the equity premium approximation in which the

representative agent has log utility (λ = 1). CW is the Clark and West (2007) MSPE-adjusted statistic. ∗∗ and ∗∗∗

denotes significance at the 5%, and 1% levels. The out-of-sample period spans 2006:07 - 2022:12.
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Table 22. Market Ambiguity Attitude and the Risk-Return Tradeoff with Risk Aversion

Monthly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1 ret+1

qt 0.30 1.36∗∗∗ 0.43 1.52∗∗∗ -0.02 1.59∗∗

(1.18) (5.46) (1.38) (5.57) (-0.04) (2.29)

α
λ,t
qt -0.30 -1.37∗∗∗ -0.25 -1.68∗∗∗ -0.35 -1.39∗∗

(-1.03) (-3.91) (-0.50) (-2.63) (-1.01) (-2.35)

R2 0.005 0.005 0.041 0.011 0.003 0.059 0.000 0.007 0.027

Quarterly Full Sample (1990 - 2022) Out-of-Sample Period Training Sample Period

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel B re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3] re[t+1,t+3]

qt 0.92 3.94∗∗∗ 1.50∗∗ 4.46∗∗∗ -0.51 3.71∗∗

(1.38) (5.65) (2.02) (5.82) (-0.40) (2.29)

α
λ,t
qt -0.84 -3.89∗∗∗ -0.42 -4.60∗∗∗ -1.22 -3.65∗∗

(-1.09) (-4.09) (-0.34) (-2.93) (-1.24) (-2.42)

R2 0.014 0.011 0.111 0.046 0.002 0.163 0.003 0.027 0.062

Newey-West t statistics in parentheses; ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Notes: The table displays regressions of the log equity premium, re[t+1,t+h], in percent, against the conditional stock
market volatility (qt), estimated from a GARCH(1,1) model (from Section 2.6), in regression specifications (1), (4),
and (7); regressions of the log equity premium against the product of market ambiguity attitude and the conditional
market volatility (αλ,tqt) in regression specifications (2), (5), and (8); and regressions of the log equity premium
against both variables in regression specifications (3), (6), and (9). Market ambiguity attitude αλ,t is measured
from the equity premium approximation in which the representative agent has log utility (λ = 1). Formally, we run
versions of the following regression that include one or both of the right-hand-side variables:

re[t+1,t+h] = β0 + β1qt + β2αλ,tqt + ϵ[t+1,t+h]. (33)

Regressions (1), (2), and (3) span monthly data from the full sample period (1990:01 - 2022:12). Regressions (4),

(5), and (6) use data from the second half of this sample (2006:07 - 2022:12) which is the period for which qt and αt

are recursively estimated using only information available to investors in real time. Regressions (7), (8), and (9) use

data from the first half of the sample period (1990:01 - 2006:06) which served as the training period in which qt and

αt were estimated using all data in the first half of the sample. Regressions in Panel A are over a forecast horizon

of h = 1 month (monthly horizon). Regressions in Panel B are over a forecast horizon of h = 3 months (quarterly

horizon) and the dependent variable is the cumulative three-month log equity premium. For ease of interpreting the

coefficients, q and αq are divided by their (full sample) standard deviation.
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Appendix D Expected Log Market Return and the PD Ratio

LEMMA 1. If the payoff Xt+1 in the model is replaced with the dividend Dt+1, then replacing

Assumption 1 with Dt+1 = (1+ξqt)Dt, Dt+1 = (1−ξqt)Dt, and Et[Dt+1] = Dt, gives approximately

the same equation for the equity premium in (11). Moreover, the expected log return is approximately

linear in the price-dividend ratio.

Proof. Given the best and worst case scenarios for future dividend, i.e., Dt+1 = (1 + ξqt)Dt and

Dt+1 = (1− ξqt)Dt, the price Equation (5) for λ = 0 becomes

Pt = (1− γt)δEt[Dt+1] + γtδ
(
αtDt+1 + (1− αt)Dt+1

)
Pt = (1− γt)δDt + γtδ

(
αt(1 + ξqt)Dt + (1− αt)(1− ξqt)Dt

)
.

Thus, log(pdt) = log(δ) + log
(
1− ξγtqt(1− 2αt)

)
, and using the approximation log(1 + x) ≈ x, we

find that as is the case with pdt, the log price-dividend ratio log(pdt) is (approximately) linear in

ξγtqt(1− 2αt). Note that the approximation is accurate if γtqt is small, and in our monthly data,

both γt (on average 0.05) and qt (on average 0.04) are small.

As for the expected return, we have EtRt+1 =
Et[Dt+1]

Pt
= 1

pdt
, so the log expected return is linear

in log(pdt), which is linear ξγtqt(1− 2αt). Thus, we showed that approximately, both pdt and the

log expected return are linear in ξγtqt(1− 2αt), and hence, the log expected return is also linear in

pdt. Finally, note that the log expected return and expected log return are off by a Jensen’s term.

Thus, as long as this Jensen’s term is negligible, the expected log return is approximately linear

in the price-dividend ratio. The last condition on the negligibility of Jensen’s term can be checked

in the data, and we find that in our monthly data, log expected returns and expected log returns

have an almost perfect correlation.
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